SSL - Importance of OU - Domain Control Validated - security

I have recently setup some server scripts to automatically process SSL / renewals using the "Let's Encrypt" registrar. This has enabled us to apply SSL certificates to some of our low key clients such as blogs, who are not willing to pay for an SSL certificate. It has also the benefit of making the whole system streamlined so that we no longer have to manually renew and a pleasant reduction in initial setup time.
However one drawback which niggles me is that this type of SSL does not validate the domain, and the "OU - Domain Control Validated" flag is missing from the certificate.
I understand as to why this is, I'm just wondering where the usage cut-off of such a certificate should lies.
Should I be using a certificate with the absence of this flag on:
Ecommerce sites
Does this effect PCI compliance, and if so is the basic level effected?
SEO - Would you think that there will be any SEO impact for not validating the Domain (similar to none-SSL sites).
Do certificates which cover multiple hosts have an impact, which are now easily be combined; or should these be avoided and have multiple certificates? Such as: mysite.com, mysite.co.uk

Related

Decentralized e-commerce site, what to do about SSL/security?

I'm building a site that is basically a decentralized amazon.
Basically, each seller hosts a copy of the site, at their own ip address, and accepts (bitcoin) payments using a self-hosted bitcoin wallet(https://github.com/tchoulihan/bitmerchant) that I made for this purpose.
My difficulty is this: I don't want to force every single one of these nodes to buy their own ssl, but I still need the requests to be encrypted. Would self-signed certificates work for this situation?
If they wouldn't work, what options do I have?
Edit: this is for the front-facing site, IE browser ssl.
I don't want to force every single one of these nodes to buy their own ssl
Why not? StartSSL is at least one provider that offers signed certificates for free...
Any other option that you do is going to be simply trying to reinvent SSL (and poorly at best).
Just use SSL and be done with it.
My difficulty is this: I don't want to force every single one of these nodes to buy their own ssl, but I still need the requests to be encrypted.
Join a root program, like [formally called] GeoRoot. These root programs let you become a subordinate CA so you can issue certificates for domains and subdomains that you have administrative control.
Or, point your users to CAcert or StartSSL. Both issue Class 1 end entity certificates for free. Their certificates are trusted in most desktop and mobile browsers. They charge for revocation because that's where the cost lies.
Would self-signed certificates work for this situation?
No. Browsers have moved against self signed certificates.
Related, browsers of full of these subordinate roots issued to organizations. The problem is the CA's usually certify the organizational subordinate without name constraints. The independent 3rd party auditor was removed (the RA), and the complimentary security control (name constraints) was not used. So an organization like yours could issue certificates for any domain, and not just the ones you administer. (The "inmates are running the asylum" comes to mind).
An example of such a CA is GeoTrust. An example of an unconstrained subordinate issued to an organization is Google Internet Authority G2.
A related question on Information Security Stack Exchange: Should name constraints be present on a subordinate CA issued to an organization?
And the IETF's position in the PKIX working group (bad idea): How to handle organizational subordinate CA's when I want to stop the flow of trust?.
And the IETF's position in the DBOUND working group (bad idea): Another use case to consider....
Only the CA's and Browsers think unconstrained subordinate CAs issued to an organization are a good idea.

SSL for admin internal website

We have an website which is used to administrate users. There is one payment section on this website which we use to make payments for our clients with their CC. I would like to secure this section by using HTTPS. So the goal is to make the connection secure.
What type of certificate should we use? Is https://www.openssl.org/ a good solution for this? Any other option?
Do we need an dedicated IP for this domain?
Creating all of the certificates on your own will not instill confidence. If credit cards are involved, you should probably work with a well-known Certificate Authority in order to provide a trustworthy, signed certificate.
Otherwise, your customers will get warnings and errors telling them not to trust your service!
Most Certificate Authorities have tutorials on how to purchase their SSL products and use them to get a certificate for your site. Here is an example product from Symantec.
SSL (the 'S' in HTTPS) does not generally place any restrictions on how your IPs work. The SSL certificates are often issued to domains and/or hostnames. If the certificate is issued to "payments.mysite.com" it will theoretically work for any server that the DNS server resolves for "payments.mysite.com"
Self-signed SSL certificates are just as good/safe/secure as SSL certificates from trusted suppliers. But they have a down-side in that unless they are installed on the users machine the browser will give warnings, and/or not go to the page with the certificate without explicit approval from the user (Chrome does this).
So IF you are able to distribute the SSL to the users, or they are able to install it them selves, or they are willing to ignore warnings, then a self-signed certificate is a good choice. If these are not options you have then you need a trusted SSL certificate.
EDIT: If you need a dedicated IP is dependent on how you resolve the address to the site (dns?).

Heroku + SSL Endpoint + SSL Cert from goDaddy. Is it secured

This is a very general question, not sure if its a duplicate as I have not really found my answer yet.
My company is very concerned about security of data, means, we are very particular about hosting our app and also our database. We are dealing with quite sensitive information such as medical data. We previously used AWS, means using a raw instance with no SSL at all. We migrated our web app to Heroku, as its purchased by cloudforce and we do not really need to take care about security, pen-testing all these stuff.
Then, we used heroku's SSL endpoints with a goDaddy SSL Cert which we think it might further enhance the security of the site.
I can say I am super noob in web security but are these measures enough?
If you are dealing with medical data, the measures you describe are not enough by themselves.
An SSL certificate will ensure your data is protected (encrypted) when it goes over the wire. A certificate will also identify the server to your users (mitigating man-in-the-middle attacks).
But when dealing with sensitive data, you'd also have to make sure your data is protected at rest (encrypted in the database or encrypting the database files themselves). You also have to take measures to prevent unauthorized access. This means that your users need to authenticate themselves and you have to give them access or prevent them from having access based on who they are or what role they are in (RBAC).
Google for any of the terms in this answer will give you lots more information.
It indeed is a general question, so only a general answer can be provided. Furthermore, it all depends on how you define "enough".
Of course using SSL give you the advantages of it, you are better of with it than without.
But make sure that you understand what SSL does and does not do. A limited list:
SSL does encrypt the communication between client en server.
SSL does conform the identity of the server (if he manage to keep his private key secure).
SSL does not prevent any acces to your endpoint
SSL does not conform in any way the identity of a user.

Are certificates useful for intranet SSL?

I've been tasked with development of an intranet interface for command line software, and now I'm researching security options. Our command line application is finished, but I haven't started writing the web interface. I don't know exactly what the security requirements are for potential customers, although I believe ssh is generally acceptable for the command line interface. With this in mind, I'm asking for help developing a menu of choices with their associated pros/cons. Some day, we may consider releasing our web interface to the internet, so I'm willing to consider more security than currently necessary if it's easy and/or free.
I've been doing a lot of reading, and my tentative conclusion is that SSL security with no certificate is the best approach, not because less security is unacceptable, but because SSL is the standard and because it doesn't appear to be difficult to set up. I, a security non-expert, wouldn't need to explain why less security is acceptable to security non-experts. I could upgrade my application to use a certificate in the future if necessary.
Here's a list of SSL related security choices, sorted by my perception of security level with my comments. What level of protection do I need?
No SSL. This might be acceptable if our customers aren't worried about their employees seeing/changing each others' data. Their employees might want to share results with each other anyway, and I could use IP based access control and/or passwords for security.
Do SSL with no certificate. This encrypts the communication, which at least protects the data from being read by unauthorized employees. Using a password, this is the same level of security as ssh on the command line, right? I don't need to worry about man-in-the-middle attacks in an intranet, right? A con for this approach would be if there were loads of browser warning messages.
Do SSL with a self-signed certificate. What does this give me that no certificate gives me? If the DNS can be changed inappropriately, then the customer then my application is the least of their concerns. Worded another way, if the DNS can change, then I think ssh would be vulnerable too.
Do SSL with a local Certificate Authority. OpenSSL lets me make my own Certificate Authority. What does this give me that a self-signed certificate does not? I'm assuming that on a LAN, it's less important for the server to be verified.
Do SSL with an external Certificate Authority. Is there ever a reason to go this route for an intranet? I found some "intranet certificates" for sale online -- but it's not clear what they're offering I can't do myself.
For reference, this page might be useful for comparing certificates:
http://httpd.apache.org/docs/trunk/ssl/ssl_faq.html#aboutcerts
[update]
Here's an article discussing the risks and rules of obtaining an internal certificate from a public CA.
Yes, certificates are still useful for Intranet SSL.
There's an important difference between SSH and SSL-without-a-certificate: when you first connect to a server with SSH, your SSH stores the server's fingerprint. If you then try to connect to what the SSH client believes to be the same machine but gets back a different fingerprint, it alerts you that there might be someone intercepting your communications.
SSL-without-a-certificate, on the other hand, does not store the server's fingerprint. Your communications will still be encrypted, but if someone somehow hijacks the DNS server as you mentioned, or, as Rushyo notes, does ARP poisoning or something similar, they would be able to perform a man-in-the-middle attack. SSH, as previously mentioned, would (supposing you had connected to the correct server some time in the past) notice that the fingerprint had changed and alert you.
A self-signed certificate would be comparable in security to SSH. A man in the middle could generate their own self-signed certificate, but as long as your applications are configured to only accept that self-signed certificate, you should get an alert similar to that that SSH will give you.
A local certificate authority gives you security similar to self-signed certificates, but may be more scalable. Should you have multiple servers, each can have their own certificate, but a client only needs the top-level one to trust all of them. If a server is compromised, you can revoke its certificate rather than having to change every server's certificate.
I don't believe an external certificate authority has any advantages, other than possibly less configuration if your machines already have the certificate authority trusted.
Lastly, I don't know enough about two-factor authentication to evaluate it, but for most applications, SSL should be sufficient.
Disclaimer: I am not a security expert.
Do SSL with an external Certificate Authority. Is there ever a reason to go this route for an intranet? I found some "intranet certificates" for sale online -- but it's not clear what they're offering I can't do myself.
The benefit is that you don't need to learn how to setup your own Certificate Authority if you need to manage a decent number of certificates and/or machines. Such a certificate would already be trusted by all browsers without you needing to install your own certificates into the trusted store.
However, this is actually less secure because somebody could purchase a certificate for a different intranet and use it on your network. For this reason, SSL vendors no longer offer this service. For more information, see: https://www.godaddy.com/help/phasing-out-intranet-names-and-ip-addresses-in-ssls-6935
If you only have a very small intranet, then I would recommend using a self-signed certificate, and then just add each self-signed certificate to each computer's trusted store.
However, it quickly becomes impractical to install a new certificate on every computer in your intranet whenever you want to add a new computer. At this point, you want to setup your own Certificate Authority so that you only need to install a single CA certificate in each computer's trusted store.

How does SSL actually work?

Whenever I see it being talked about, it sounds like one simply 'turns on' SSL and then all requests/responses to/from an online server are magically secure.
Is that right? Is SSL just about code - can I write two apps and make them communicate via SSL, or do you have to somehow register/certificate them externally?
Secure web pages are requested on port 443 instead of the normal port 80. The SSL protocol (plenty complicated in and of itself) is responsible for securing communication, and using the certificate information on both the SERVER and the BROWSER to authenticate the server as being who they say they are.
Generating an SSL certificate is easy. Generating one that is based on the information embedded in 99% of web browsers costs money. But the technical aspects are not different.
You see, there are organizations (Verisign, Globalsign, etc...) that have had their certificate authority information INCLUDED with browsers for many years. That way, when you visit a site that has a certificate that they produced (signed), your browser says:
"well, if Verisign trusts XYZ.com, and I trust Verisign, then I trust XYZ.com"
The process is easy:
Go to a competent SSL vendor, such as GlobalSign. Create a KEY and Certificate Request on the webserver. Use them (and your credit card) to buy a certificate. Install it on the server. Point the web-browser to HTTPS (port 443). The rest is done for you.
SSL is a protocol for encrypted communications over a TCP connection (or some other reliable scheme). The encryption uses public key encryption using X.509 certificates. SSL handles both privacy and trust. These are related: if you don't trust the server, you don't believe that the server hasn't handed out its private key to everyone in North America.
Thus, the client has to trust the server's certificate. For public sites, this is arranged via a hierarchy of certificate authorities, with the root authorities trusted, automatically, by browsers and things like the JRE's socket implementation.
Anyone can generate a self-signed certificate for a server, but then the client has to be manually configured to trust it.
SSL is not, in itself, a magic bullet that makes everything secure. Security has no such things.
SSL is, however, an already-designed, ready-to-use system for solving a common problem: secure stream communication over a network connection.
There are two things you need to do to secure your application with SSL:
Modify the application's code to use SSL.
Determine the certificate trust model (and deploy and configure the application respectively).
Other answers and documentation provide better answers to how to do each of these things than I could provide.
I'll throw caution to the wind and attempt to condense an enormous subject.
SSL attempts to solve two problems:
1) Authentication and hence trust i.e can the client trust the server and vice versa
2) Communication without eavesdropping
1) Is handled by means of an intermediary i.e a trusted 3rd party - these are called 'Root Certificate Authorities' ( or Root CAs ) examples include Verisign, RSA etc
If a company wants to authenticate users and more importantly if a user wants to authenticate the company's website it's connecting to i.e your bank then the Root CA issues the company a certificate which effectively says 'I the trusted Root CA verify that I trust that Company X are who they say they are and am issuing a certificate accordingly'. So you get a chain of trust i.e I trust the certificate from ACME Co because Root CA Verisign created and issued it.
2) Once the two parties have authenticated then the certificate ( typically X590 ) is used to form a secure connection using public/private key encryption.
Hopelessly simple and incomplete but hope that gives a rough idea
Yes and no. You should self-sign a certificate and test the site with SSL internally before deploying it with SSL, first of all. To make the public site secure under SSL, you will need to purchase a certificate from one of any number of certificate providers. Then you will have a certificate signed by a trusted third party, tied to your domain name, so that users' browsers won't complain that the certificate is invalid, etc. Turning SSL on is pretty much just flipping a switch, otherwise.
For the most part you need to buy and register a certificate externally.
You need to have your server certificate signed by a Certificate Authority (CA), for which they will charge you. The client needs to trust that CA and have a copy of the relevant CA public key. The client can then check that you are who you claim to be (including domain name (from DNS) and display name for https).
This is a good tutorial on how to create self signed certificates for Apache.
If you want to know how SSL works on either the Server or the Client, then I suggest Googling it. As you suspected, it is a ridiculesly complex procedure, with lots of communication between the client and server, a lot of very peculiar math, and tons of processing. There is also a lot of theory involved, several protocols and many different algorithms and encryption standards. It's quite incredible how changing http:// to https:// is so simple to the user, but results in so much work for both sides, and is so secure. To really understand it you need to take a security course (multiple courses to fully understand it), as the entire history of encryption goes into making your login to Gmail secure.
Turning on TLS (colloquially "SSL") does not make your site magically secure. You may still be vulnerable to application-level vulnerabilities like stack overflows, SQL injection, XSS, and CSRF.
As other answers have explained, TLS only protects against a man in the middle. Traffic between a client and a properly-configured TLS server cannot be intercepted or modified, and the client can reliably confirm the identity of the server by validating the X.509 certificate. This prevents an attacker from impersonating your TLS server.
SSL actually does two things:
Encrypts the communication so that an observer seeing the data stream will not be able to read the conversation.
Guarantees that you are talking to who you think you are talking to.
It is only for #2 that you need to get official certificates. If you only care to encrypt the communication without setting up a trust relationship, you can use self-signed certificates or you can use an algorithm that does not require certificates (i.e. Diffie-Hellman).

Resources