the loss didn't drop in tf with keras cifar10 datesets - python-3.x

I create a vgg like model in tensorflow and use cifar10 in keras to train it, but the loss didn't drop, can u find what's the problem?
cifar10 datesets
from keras.datasets import cifar100, cifar10
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
def load_cifar(num_class=100):
if num_class == 100:
nb_classes = 100
(trainX, trainY), (testX, testY) = cifar100.load_data()
else:
nb_classes = 10
(trainX, trainY), (testX, testY) = cifar10.load_data()
trainX = trainX.astype('float32')
testX = testX.astype('float32')
trainX /= 255.
testX /= 255.
Y_train = np_utils.to_categorical(trainY, nb_classes)
Y_test = np_utils.to_categorical(testY, nb_classes)
generator = ImageDataGenerator(rotation_range=15,
width_shift_range=5. / 32,
height_shift_range=5. / 32,
horizontal_flip=True if num_class ==10 else False)
generator.fit(trainX, seed=0)
return trainX, Y_train, testX, Y_test, generator
model and train
import sys
import os
sys.path.append(os.path.abspath('../'))
print(sys.path)
import tensorflow as tf
from Input import cifar
BatchSize = 2
def gen_gen(batch_size=BatchSize):
trainX, Y_train, testX, Y_test, generator = cifar.load_cifar(10)
gen = generator.flow(trainX, Y_train, batch_size=batch_size)
return gen
class vgg16TF():
def __init__(self, ih=32, iw=32, batch_size=BatchSize):
self.ih = ih
self.iw = iw
self.batch_size = batch_size
def unit(self, x, conv_nums, filters, name=None):
for i in range(1, conv_nums+1):
x = tf.layers.conv2d(inputs=x, filters=filters, kernel_size=(5, 5), padding='same',
use_bias=True, activation=tf.nn.relu, name=name+'_conv'+str(i))
x = tf.layers.max_pooling2d(x, (3, 3), strides=(2, 2), name=name+'_pool')
return x
def net(self):
input_x = tf.placeholder(shape=(self.batch_size, self.ih, self.iw, 3), dtype=tf.float32)
x = self.unit(input_x, 2, 64, name='blook1')
x = self.unit(x, 2, 64, name='blook2')
# x = self.unit(x, 3, 256, name='blook3')
# x = self.unit(x, 3, 512, name='blook4')
# x = self.unit(x, 3, 512, name='blook5')
x = tf.layers.flatten(x, name='flatten')
x = tf.layers.dense(x, 384, activation=tf.nn.relu, name='fc1', use_bias=True)
x = tf.layers.dense(x, 192, activation=tf.nn.relu, name='fc2', use_bias=True)
y = tf.layers.dense(x, 10, name='prediction', use_bias=True)
print(y)
return input_x, y
def loss(self, labels, logits):
labels = tf.cast(labels, tf.int64)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=tf.arg_max(labels,1), logits=logits
)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
tf.add_to_collection('losses', cross_entropy_mean)
return tf.add_n(tf.get_collection('losses'))
def train(self):
input_x, y_ = self.net()
input_y = tf.placeholder(shape=(self.batch_size, 10), dtype=tf.float64)
loss = self.loss(input_y, y_)
optimizer = tf.train.AdamOptimizer().minimize(loss=loss)
# correct_pred = tf.equal(tf.arg_max(y_, 1), tf.arg_max(input_y, 1))
# accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
with tf.Session() as sess:
tf.global_variables_initializer().run()
gen = gen_gen()
for i in range(10000):
train_x, train_y = gen.next()
# print(train_x.shape)
loss_val, _ = sess.run([loss, optimizer], feed_dict={input_x: train_x, input_y: train_y})
if i % 10 == 0:
print(loss_val)
some loss of train step:
2.2985106
2.2944324
2.3120923
2.306837
2.304546
2.2818785
2.3069105
2.3087378
2.3094501
2.2966876
2.3119392
2.2941442
2.2990022
2.2830834
2.3137615

I don't see any obvious errors in the code, but I can share my experience that the Adam optimizer does not always work well with VGG-like networks due to the large number of parameters, and the symptom is that the loss does not decrease. In that case you should use plain SGD with an appropriate learning rate and a schedule.

Related

PyTorch simple ConvNet diverge so easly

So I'm studiying pytorch coming from a background with tensorflow.
I'm trying to replicate a simple convnet, that I've developed with success in tensorflow, to classify cat vs dogs images.
In pytorch I see some strange behaviors:
Using a Learning Rate of 0.001 make the CNet predicting only 0 after the first batch (might be exploding gradients?)
Using a Learning Rate of 0.0005 gives a smooth learning curve and the CNet converge
Can anyone help me to understand what I'm doing wrong? that the code:
import pathlib
import torch
import torch.nn.functional as F
import torchvision
from torch.utils.data.dataloader import DataLoader
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class CNet(torch.nn.Module):
def __init__(self):
super(CNet, self).__init__() #input is 180x180 image
self.conv1 = torch.nn.Conv2d(3, 32, 3) # out -> 178x178x32
self.conv2 = torch.nn.Conv2d(32, 64, 3)
self.conv3 = torch.nn.Conv2d(64, 128, 3)
self.conv4 = torch.nn.Conv2d(128, 256, 3)
self.conv5 = torch.nn.Conv2d(256, 256, 3)
self.flatten = torch.nn.Flatten()
#self.fc = torch.nn.LazyLinear(1)
self.fc = torch.nn.Linear(7*7*256, 1)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv4(x)), (2, 2))
x = F.relu(self.conv5(x))
x = self.flatten(x)
o = torch.sigmoid(self.fc(x))
return o
def train(model : CNet, train_data : DataLoader, criterion, optimizer : torch.optim.Optimizer, epochs = 10, validation_data : DataLoader = None):
losses = []
for epoch in range(epochs):
epoch_loss = 0.0
running_loss = 0.0
for i, data in enumerate(train_data, 0):
imgs, labels = data
imgs, labels = imgs.to(device), labels.to(device, dtype=torch.float)
labels = labels.unsqueeze(-1)
# run
output = net(imgs)
# zero out accumulated grads
loss = criterion(output, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
epoch_loss += loss.item()
#if i % 50 == 49:
# print(f'[{epoch+1}, {i:5d}] loss: {running_loss / 50.0:.3f}')
# running_loss = 0.0
losses.append(epoch_loss / len(train_data.dataset))
print(f'[{epoch+1}, {epochs:5d}] loss: {losses[-1]:.3f}')
return losses
if __name__=="__main__":
transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize((180, 180)),
torchvision.transforms.ToTensor(),
])
dataset_dir = pathlib.Path("E:\Datasets\\torch\Cat_Dog\cats_vs_dogs_small")
train_data = torchvision.datasets.ImageFolder(dataset_dir / "train", transform=transforms)
validation_data = torchvision.datasets.ImageFolder(dataset_dir / "validation", transform=transforms)
test_data = torchvision.datasets.ImageFolder(dataset_dir / "test", transform=transforms)
train_data_loader = DataLoader(train_data, batch_size=32, shuffle=True, num_workers=2, persistent_workers=True, pin_memory=True)
validation_data_loader = DataLoader(validation_data, batch_size=32, num_workers=2, shuffle=True, pin_memory=True)
test_data_loader = DataLoader(test_data, batch_size=32, shuffle=True, pin_memory=True, num_workers=2)
import matplotlib.pyplot as plt
#plt.figure()
#for i in range(1, 10):
# plt.subplot(3, 3, i)
# plt.axis('off')
# rand_idx = np.random.random_integers(0, len(train_data))
# plt.imshow(np.moveaxis(test_data[rand_idx][0].numpy(), 0, 2))
#plt.show()
net = CNet()
net = net.to(device)
criterion = torch.nn.BCELoss()
optimizer = torch.optim.RMSprop(net.parameters(), 0.001)
net.train()
# TODO save best model
losses = train(net, train_data_loader, criterion, optimizer, epochs=30)
epochs = range(1, len(losses) + 1)
plt.plot(epochs, losses, 'bo', label='Training Loss')
plt.show()
print('Training Finished')
correct_count, all_count = 0, 0
for images,labels in test_data_loader:
images,labels = images.to(device), labels.to(device, dtype=torch.float)
with torch.no_grad():
ps = net(images)
pred_label = (ps > 0.5).to(torch.float)
true_label = labels.unsqueeze(1)
correct_count += (pred_label == true_label).sum().item()
all_count += len(labels)
print("Number Of Images Tested =", all_count)
print("\nModel Accuracy =", (correct_count/all_count))
and here some screenshot of the loss for each point:
LR=0.001 (not convering on pytorch, converging on tensorflow)
LR=0.0005 (converging in 30 epochs) [I know that the validation loss is not 0, accuracy is ~70% but is expected]
As you can see the loss on the two experiment are very different in scale. What might cause that such a weird behavior? I call it 'wierd' cause I never seen that happen on tensorflow.
Is typicall such different behavior between those 2 framework? or am I loosing something?

How can I add SSIM?

I'm trying to add an SSIM to the following code and print the results in a table at the end, but I just can't seem to make it work, can you help me?
Also my adam optimizer is not working I have no idea how to make it work,
what should I fix in my code?
from keras.models import Model
from keras.layers import Conv2D, MaxPooling2D, UpSampling2D, Input
import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
import cv2
from math import log10, sqrt
from tensorflow.keras.callbacks import EarlyStopping
from tabulate import tabulate
for dirname, _, filenames in os.walk('C:/Users/pc/Desktop/Train/'):
for filename in filenames:
print(os.path.join(dirname, filename))
from keras.preprocessing import image
train_images = sorted(os.listdir('C:/Users/pc/Desktop/Train/'))
train_image = []
for im in train_images:
img = image.load_img('C:/Users/pc/Desktop/Train/'+ im, target_size=( 64, 64), color_mode= 'grayscale')
img = image.img_to_array(img)
img = img/255
train_image.append(img)
train_df = np.array(train_image)
def show_img(dataset):
f, ax = plt.subplots(1,5)
f.set_size_inches(40, 20)
for i in range(5,10):
ax[i-5].imshow(dataset[i].reshape( 64, 64), cmap='gray')
plt.show()
def add_noise(image):
row,col,ch= image.shape
mean = 0
sigma = 1
gauss = np.random.normal(mean,sigma,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss*0.09
return noisy
noised_df= []
for img in train_df:
noisy= add_noise(img)
noised_df.append(noisy)
noised_df = np.array(noised_df)
show_img(train_df)
show_img(noised_df)
noised_df.shape
train_df.shape
xnoised= noised_df[0:100]
xtest= noised_df[100:]
xnoised.shape
def autoencoder():
input_img = Input(shape=( 64, 64,1), name='image_input')
#encoder
x = Conv2D( 64, (3,3), activation='relu', padding='same', name='Conv1')(input_img)
x = MaxPooling2D((2,2), padding='same', name='pool1')(x)
x = Conv2D( 64, (3,3), activation='relu', padding='same', name='Conv2')(x)
x = MaxPooling2D((2,2), padding='same', name='pool2')(x)
#decoder
x = Conv2D( 64, (3,3), activation='relu', padding='same', name='Conv3')(x)
x = UpSampling2D((2,2), name='upsample1')(x)
x = Conv2D( 64, (3,3), activation='relu', padding='same', name='Conv4')(x)
x = UpSampling2D((2,2), name='upsample2')(x)
x = Conv2D(1, (3,3), activation='sigmoid', padding='same', name='Conv5')(x)
#model
autoencoder = Model(inputs=input_img, outputs=x)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
return autoencoder
model= autoencoder()
model.summary()
with tf.device('/device:GPU:0'):
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1, mode='auto')
model.fit(xnoised, xnoised, epochs=50, batch_size=128, validation_data=(xtest, xtest), callbacks=[early_stopping])
xtrain= train_df[100:]
pred= model.predict(xtest[:5])
def plot_predictions(y_true, y_pred):
f, ax = plt.subplots(4, 5)
f.set_size_inches(10.5,7.5)
for i in range(5):
ax[0][i].imshow(np.reshape(xtrain[i], ( 64, 64)), aspect='auto', cmap='gray')
ax[1][i].imshow(np.reshape(y_true[i], ( 64, 64)), aspect='auto', cmap='gray')
ax[2][i].imshow(np.reshape(y_pred[i], ( 64, 64)), aspect='auto', cmap='gray')
ax[3][i].imshow(cv2.medianBlur(xtrain[i], (5)), aspect='auto', cmap='gray')
plt.tight_layout()
plot_predictions(xtest[:5], pred[:5])
new_image = cv2.medianBlur(xtrain[0], (5))
plt.figure(figsize=(6,3))
plt.subplot(131)
plt.imshow(pred[0].reshape( 64, 64), cmap='gray')
plt.title('Autoencoder Image')
plt.xticks([])
plt.yticks([])
plt.subplot(132)
plt.imshow(new_image, cmap='gray')
plt.title('Median Filter')
plt.xticks([])
plt.yticks([])
plt.subplot(133)
plt.imshow(noisy, cmap='gray')
plt.title('Noisy')
plt.xticks([])
plt.yticks([])
plt.show()
array1 = np.array(img)
array2 = np.array(pred)
difference_array = np.subtract(array1, array2)
squared_array = np.square(difference_array)
mse = squared_array.mean()
def PSNR(original, denoiced):
mse = np.mean((original - denoiced) ** 2)
if(mse == 0):
return 100
max_pixel = 255.0
psnr = 20 * log10(max_pixel / sqrt(mse))
return psnr
value1 = PSNR(xtest[0], new_image)
value2 = PSNR(xtest[0], pred[0])
data = [["Median filtered image", value1],
["Autoencoder Image (Denoised)", value2]]
col_names = ["Type d'image", "PSNR"]
print(tabulate(data, headers=col_names, tablefmt="fancy_grid"))
data = [["MSE", mse]]
col_names = ["/", "Mean squared error"]
print(tabulate(data, headers=col_names, tablefmt="github"))
but no results
and for the training part, my optimizer (adam) doesnt seem to work, and the images I'm getting after training seem a little blurry compared to the median filter ones..
This is what I get,
the value of SSIM is <function SSIM at 0x0000028381F1CB80>

Why is my GAN not producing more good images after a certain point?

Question
I was training a gan to generate human faces. Within approximately 500 epochs, it learned to generate images like this:
Well, now this image is not too bad. We can see a face in the center of the image.
Then I trained it for more 1000 epochs and it learned nothing. It was still generating the same type of images as shown above. Why was that? Why wasn't my gan not learning to produce even better images?
Code for the Models
Here is the code of the discriminator:
def define_discriminator(in_shape=(64, 64, 3)):
Model = Sequential([
Conv2D(32, (3, 3), padding='same', input_shape=in_shape),
BatchNormalization(),
LeakyReLU(alpha=0.2),
MaxPooling2D(pool_size=(2,2)),
Dropout(0.2),
Conv2D(64, (3,3), padding='same'),
BatchNormalization(),
LeakyReLU(alpha=0.2),
MaxPooling2D(pool_size=(2,2)),
Dropout(0.3),
Conv2D(128, (3,3), padding='same'),
BatchNormalization(),
LeakyReLU(alpha=0.2),
MaxPooling2D(pool_size=(2,2)),
Dropout(0.3),
Conv2D(256, (3,3), padding='same'),
BatchNormalization(),
LeakyReLU(alpha=0.2),
MaxPooling2D(pool_size=(2,2)),
Dropout(0.4),
Flatten(),
Dense(1, activation='sigmoid')
])
opt = Adam(lr=0.00002)
Model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])
return Model
Here is the code of the generator and the GAN:
def define_generator(in_shape=100):
Model = Sequential([
Dense(256*8*8, input_dim=in_shape),
BatchNormalization(),
LeakyReLU(alpha=0.2),
Reshape((8, 8, 256)),
Conv2DTranspose(256, (3,3), strides=(2,2), padding='same'),
BatchNormalization(),
LeakyReLU(alpha=0.2),
Conv2DTranspose(64, (3,3), strides=(2,2), padding='same'),
BatchNormalization(),
LeakyReLU(alpha=0.2),
Conv2DTranspose(3, (4, 4), strides=(2,2), padding='same', activation='sigmoid')
])
return Model
def define_gan(d_model, g_model):
d_model.trainable = False
model = Sequential([
g_model,
d_model
])
opt = Adam(lr=0.0002, beta_1=0.5)
model.compile(loss='binary_crossentropy', optimizer=opt)
return model
Entire Reproducible Code
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, BatchNormalization
from tensorflow.keras.layers import Dropout, Flatten, Dense, Conv2DTranspose
from tensorflow.keras.layers import MaxPooling2D, Activation, Reshape, LeakyReLU
from tensorflow.keras.datasets import mnist
from tensorflow.keras.optimizers import Adam
from numpy import ones
from numpy import zeros
from numpy.random import rand
from numpy.random import randint
from numpy.random import randn
from numpy import vstack
from numpy import array
import os
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.preprocessing.image import img_to_array
from matplotlib import pyplot
def load_data(filepath):
image_array = []
n = 0
for fold in os.listdir(filepath):
if fold != 'wiki.mat':
if n > 1:
break
for img in os.listdir(os.path.join(filepath, fold)):
image = load_img(filepath + fold + '/'+ img, target_size=(64, 64))
img_array = img_to_array(image)
img_array = img_array.astype('float32')
img_array = img_array / 255.0
image_array.append(img_array)
n += 1
return array(image_array)
def generate_latent_points(n_samples, latent_dim=100):
latent_points = randn(n_samples * latent_dim)
latent_points = latent_points.reshape(n_samples, latent_dim)
return latent_points
def generate_real_samples(n_samples, dataset):
ix = randint(0, dataset.shape[0], n_samples)
x = dataset[ix]
y = ones((n_samples, 1))
return x, y
def generate_fake_samples(g_model, n_samples):
latent_points = generate_latent_points(n_samples)
x = g_model.predict(latent_points)
y = zeros((n_samples, 1))
return x, y
def save_plot(examples, epoch, n=10):
# plot images
for i in range(n * n):
# define subplot
pyplot.subplot(n, n, 1 + i)
# turn off axis
pyplot.axis('off')
# plot raw pixel data
pyplot.imshow(examples[i, :, :, 0])
# save plot to file
filename = 'generated_plot_e%03d.png' % (epoch+1)
pyplot.savefig(filename)
pyplot.close()
def summarize_performance(d_model, g_model, gan_model, dataset, epoch, n_samples=100):
real_x, real_y = generate_real_samples(n_samples, dataset)
_, d_real_acc = d_model.evaluate(real_x, real_y)
fake_x, fake_y = generate_fake_samples(g_model, n_samples)
_, d_fake_acc = d_model.evaluate(fake_x, fake_y)
latent_points, y = generate_latent_points(n_samples), ones((n_samples, 1))
gan_loss = gan_model.evaluate(latent_points, y)
print('Epoch %d, acc_real=%.3d, acc_fake=%.3f, gan_loss=%.3f' % (epoch, d_real_acc, d_fake_acc, gan_loss))
save_plot(fake_x, epoch)
filename = 'Genarator_Model % d' % (epoch + 1)
g_model.save(filename)
def train(d_model, g_model, gan_model, dataset, epochs=200):
batch_size = 64
half_batch = int(batch_size / 2)
batch_per_epoch = int(dataset.shape[0] / batch_size)
for epoch in range(epochs):
for i in range(batch_per_epoch):
real_x, real_y = generate_real_samples(half_batch, dataset)
_, d_real_acc = d_model.train_on_batch(real_x, real_y)
fake_x, fake_y = generate_fake_samples(g_model, half_batch)
_, d_fake_acc = d_model.train_on_batch(fake_x, fake_y)
latent_points, y = generate_latent_points(batch_size), ones((batch_size, 1))
gan_loss = gan_model.train_on_batch(latent_points, y)
print('Epoch %d, acc_real=%.3d, acc_fake=%.3f, gan_loss=%.3f' % (epoch, d_real_acc, d_fake_acc, gan_loss))
if (epoch % 2) == 0:
summarize_performance(d_model, g_model, gan_model, dataset, epoch)
dataset = load_data(filepath) # filepath is not defined since every person will have seperate filepath
discriminator_model = define_discriminator()
generator_model = define_generator()
gan_model = define_gan(discriminator_model, generator_model)
train(discriminator_model, generator_model, gan_model, dataset)
Dataset
If you want here is the dataset.

Tensorflow 2.0 Identical model structure and hyper parameters result in different performance in different calling approaches

there. I am a starter and learning Tensorflow 2.0. I have one model called in 3 different approaches. And the performances are different. Could anyone tell me why this is the case?
The model constructing and calling approach:
import os, sys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, models, layers, regularizers, optimizers
def prepare_mnist_features_and_labels(x, y):
x = tf.cast(x, tf.float32)/255.0
y = tf.cast(y, tf.int64)
return x, y
def mninst_dataset():
(x_train, y_train), (x_eval, y_eval) = datasets.mnist.load_data()
print('x_train/y_train shape:', x_train.shape, y_train.shape)
y_train = tf.one_hot(y_train, depth=10)
y_eval = tf.one_hot(y_eval, depth=10)
ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
ds_train = ds_train.map(prepare_mnist_features_and_labels)
ds_train = ds_train.shuffle(x_train.shape[0]).batch(128)
ds_eval = tf.data.Dataset.from_tensor_slices((x_eval, y_eval))
ds_eval = ds_eval.map(prepare_mnist_features_and_labels)
ds_eval = ds_eval.shuffle(x_eval.shape[0]).batch(128)
sample = next(iter(ds_train))
print('sample: ', sample[0].shape, sample[1].shape)
return ds_train, ds_eval
def main():
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
trainset, evalset = mninst_dataset()
model = keras.Sequential()
model.add(layers.Reshape(target_shape=[28, 28, 1], input_shape=[28, 28]))
model.add(layers.Conv2D(filters=32, kernel_size=(5, 5), activation=tf.nn.relu, strides=[1,1], padding="SAME"))
model.add(layers.MaxPool2D(pool_size=(2,2), strides=[1,1], padding="SAME"))
model.add(layers.Conv2D(filters=64, kernel_size=(5, 5), activation=tf.nn.relu, strides=[1,1], padding="SAME"))
model.add(layers.MaxPool2D(pool_size=(2,2), strides=[2,2], padding="SAME"))
model.add(layers.Flatten())
model.add(layers.Dense(units=512, activation=tf.nn.relu, kernel_regularizer=regularizers.l2(0.01)))
model.add(layers.Dense(units=10, activation=tf.nn.relu, kernel_regularizer=regularizers.l2(0.01)))
model.compile(optimizer=optimizers.Adam(lr=0.01), loss=tf.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
model.fit(trainset.repeat(), epochs=30, steps_per_epoch=500,
validation_data=evalset.repeat(), validation_steps=10)
if __name__=='__main__':
main()
The second approach to construct the model and run it is the following:
import os, sys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, models, layers, regularizers, optimizers
from tqdm import tqdm
def prepare_mnist_features_and_labels(x, y):
x = tf.cast(x, tf.float32)/255.0
y = tf.cast(y, tf.int64)
return x, y
def mnist_dataset():
(x_train, y_train), (x_eval, y_eval) = datasets.mnist.load_data()
# y_train = tf.one_hot(y_train, depth=10)
# y_eval = tf.one_hot(y_eval, depth=10)
ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
ds_train = ds_train.map(prepare_mnist_features_and_labels)
# Test: replace x_train.shape[0] by the number of the training samples, which is 60000
ds_train = ds_train.shuffle(x_train.shape[0]).batch(128)
ds_eval = tf.data.Dataset.from_tensor_slices((x_eval, y_eval))
ds_eval = ds_eval.map(prepare_mnist_features_and_labels)
ds_eval = ds_eval.shuffle(x_eval.shape[0]).batch(128)
# sample = next(iter(ds_train))
# print('sample: ', sample[0].shape, sample[1].shape)
return ds_train, ds_eval
# tf.nn.sparse_softmax_cross_entropy_with_logits(labels, logits, name=None):
# labels: Tensof of shape [d_0, d_1, ..., d_{r-1}]. Each label must be an index in [0, num_classes]
# logits: Unscaled of log probabilities of shape [d_0, d_1, ..., d_{r-1}, num_classes]
# A common use is to have logits of shape [batch_size, num_classes] and have labels of shape [batch_size]
def compute_loss(logits, labels):
# print(logits.numpy())
# print(labels.numpy())
return tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits
)
)
def compute_accuracy(logits, labels):
predictions = tf.argmax(logits, axis=1)
# print(predictions)
# print(labels)
# print(list(zip(predictions.numpy(), labels.numpy())))
return tf.reduce_mean(tf.cast(tf.equal(predictions, labels), tf.float32))
def train_one_step(model, optimizer, x, y):
# At each train step, first calculate the forward loss
with tf.GradientTape() as tape:
logits = model(x)
loss = compute_loss(logits, y)
# Then calculate the backward gradients over each trainable variables
grads = tape.gradient(loss, model.trainable_variables)
# Optimize and update variables throught backpropagation
optimizer.apply_gradients(zip(grads, model.trainable_variables))
# Compute current model accuracy
accuracy = compute_accuracy(logits, y)
return loss, accuracy
def train(epoch, model, optimizer, trainset):
#def train(epoch, model, optimizer):
# trainset = mnist_dataset()[0]
loss = 0.0
accuracy = 0.0
#for step, (x, y) in enumerate(tqdm(trainset)):
for step, (x, y) in enumerate(tqdm(trainset)):
loss, accuracy = train_one_step(model, optimizer, x, y)
if step % 110 == 0:
print('epoch', epoch, ': loss', loss.numpy(), '; accuracy', accuracy.numpy())
return loss, accuracy
class MyModel(keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.layer1 = layers.Conv2D(filters=32, kernel_size=(5, 5), activation=tf.nn.relu, strides=[1,1], padding="SAME", input_shape=(-1, 28, 28, 1))
self.layer2 = layers.MaxPool2D(pool_size=(2,2), strides=[1,1], padding="SAME")
self.layer3 = layers.Conv2D(filters=64, kernel_size=(5, 5), activation=tf.nn.relu, strides=[1,1], padding="SAME")
self.layer4 = layers.MaxPool2D(pool_size=(2,2), strides=[2,2], padding="SAME")
self.layer5 = layers.Flatten()
self.layer6 = layers.Dense(units=512, activation=tf.nn.relu, kernel_regularizer=regularizers.l2(0.01))
self.layer7 = layers.Dense(units=10, activation=tf.nn.relu, kernel_regularizer=regularizers.l2(0.01))
def call(self, x, training=False):
x = tf.reshape(x, (-1, 28, 28, 1))
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
x = self.layer7(x)
return x
def main():
# set random seed
tf.random.set_seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
trainset, evalset = mnist_dataset()
model = MyModel()
optimizer = optimizers.Adam(lr=0.001)
# Save checkpoints with keras api as the first approach
# Save checkpoints manually as a second approach.
# find a way to implement early-stopping strategy in the programming style
# for epoch in tqdm(range(30)):
for epoch in range(50):
loss, accuracy = train(epoch, model, optimizer, trainset)
print('Final epoch', epoch, ': loss', loss.numpy(), '; accuracy', accuracy.numpy())
if __name__ == '__main__':
main()
And the last approach is below:
import os, sys
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, models, layers, regularizers, optimizers
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def prepare_mnist_features_and_labels(x, y):
x = tf.cast(x, tf.float32)/255.0
y = tf.cast(y, tf.int64)
return x, y
def mnist_dataset():
(x_train, y_train), (x_eval, y_eval) = datasets.mnist.load_data()
print('x_train/y_train shape:', x_train.shape, y_train.shape)
y_train = tf.one_hot(y_train, depth=10)
y_eval = tf.one_hot(y_eval, depth=10)
ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
ds_train = ds_train.map(prepare_mnist_features_and_labels)
ds_train = ds_train.shuffle(x_train.shape[0]).batch(128)
ds_eval = tf.data.Dataset.from_tensor_slices((x_eval, y_eval))
ds_eval = ds_eval.map(prepare_mnist_features_and_labels)
ds_eval = ds_eval.shuffle(x_eval.shape[0]).batch(128)
sample = next(iter(ds_train))
print('sample: ', sample[0].shape, sample[1].shape)
return ds_train, ds_eval
class MyModel(keras.Model):
# self.model = keras.Sequential([
# layers.Reshape(target_shape=(28*28, ), input_shape=(28, 28)),
# layers.Dense(100, activation=tf.nn.relu),
# layers.Dense(100, activation=tf.nn.relu),
# layers.Desnse(10)
# ])
def __init__(self):
super(MyModel, self).__init__()
self.layer1 = layers.Conv2D(filters=32, kernel_size=(5, 5), activation=tf.nn.relu, strides=[1,1], padding="SAME", input_shape=(-1, 28, 28, 1))
self.layer2 = layers.MaxPool2D(pool_size=(2,2), strides=[1,1], padding="SAME")
self.layer3 = layers.Conv2D(filters=64, kernel_size=(5, 5), activation=tf.nn.relu, strides=[1,1], padding="SAME")
self.layer4 = layers.MaxPool2D(pool_size=(2,2), strides=[2,2], padding="SAME")
self.layer5 = layers.Flatten()
self.layer6 = layers.Dense(units=512, activation=tf.nn.relu, kernel_regularizer=regularizers.l2(0.01))
self.layer7 = layers.Dense(units=10, activation=tf.nn.relu, kernel_regularizer=regularizers.l2(0.01))
def call(self, x, training=False):
x = tf.reshape(x, (-1, 28, 28, 1))
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
x = self.layer7(x)
return x
def main():
tf.random.set_seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
trainset, evalset = mnist_dataset()
model = MyModel()
model.compile(optimizer=optimizers.Adam(lr=0.001), loss=tf.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
model.fit(trainset.repeat(), epochs=30, steps_per_epoch=500, verbose=1,
validation_data=evalset.repeat(), validation_steps=10)
if __name__ == '__main__':
main()
Each of them take a while to train. Can anyone tell me why the performances are different? And in the future how I should debug by myself?
Thank you so much for any help.
the problem is solved after carefully examine the network. It turn out that the last fully connected layer in the model was activated with a relu function, which in not appropriate. And the choice of loss function tf.losses.categoricalCrossentropy and tf.nn.sparse_softmax_cross_entropy_with_logits also make a big difference. No matter what get chosen, Make sure the loss function and the final output of the network match.

Actually printing values from tensor object

I'm currently trying to implement a basic autoencoder using Keras, and I have come to the stage where I would want the output from the second hidden layer. I think that I'm able to get the right object, the problem is that I get it as a tensor object, the code I've been trying to run is the following:
from keras.layers import Input, Dense, initializers
import numpy as np
from Dataset import Dataset
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.optimizers import Adam
from keras.layers import Dense, Activation
import tensorflow as tf
import time
#global variables
d = Dataset()
num_features = d.X_train.shape[1]
#input = [784, 400, 100, 10, 100, 400]
#output = [400, 100, 10, 100, 400, 784]
names = ['hidden1', 'hidden2', 'hidden3', 'hidden4', 'hidden5', 'hidden6']
list_of_nodes = [784, 400, 144, 10]
def generate_hidden_nodes(list_of_nodes):
input = []
for j in range(len(list_of_nodes)):
input.append(list_of_nodes[j])
for i in range(len(list_of_nodes)-2):
input.append(list_of_nodes[-2-i])
output = input[::-1]
return input, output
input,output = generate_hidden_nodes(list_of_nodes)
def autoencoder(epochs):
w = initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)
model = Sequential()
input, output = generate_hidden_nodes(list_of_nodes)
for j in range(len(input)):
if j == (len(input)-1):
model.add(Dense(output[j], activation='sigmoid', kernel_initializer=w, input_dim=input[j], name=names[j]))
#model.add(Dropout(0.45))
else:
model.add(Dense(output[j], activation='relu', kernel_initializer=w, input_dim=input[j],
name = names[j]))
#model.add(Dropout(0.45))
model.compile(optimizer=Adam(lr=0.001), loss='binary_crossentropy', metrics=['acc'])
history = model.fit(d.X_train, d.X_train,
epochs=epochs,
batch_size=50,
shuffle=True,
validation_split = 0.2)
#validation_data=(d.X_test, d.X_test))
#print(history.history.keys())
#plt.plot(history.history['val_acc'])
#print(history.history['val_acc'])
plt.show()
return model
def cv():
accuracy = 0
size = 5
epochs = 20
variance = 0
storage = np.zeros((size, epochs))
for j in range(size):
ae = autoencoder(epochs)
#print(ae.history.history['val_acc'])
storage[j] = ae.history.history['val_acc']
for i in range(size):
accuracy += storage[i][-1]
mean = accuracy/size
for k in range(size):
variance += ((storage[k][-1] - mean)**2)
variance = variance/size
return mean, variance
#mean, variance = cv()
#print(mean)
#print(variance)
#time.sleep(10)
def finding_index():
elements, index = np.unique(d.Y_test, return_index=True)
return elements, index
def plotting():
ae = autoencoder(20)
elements, index = finding_index()
y_proba = ae.predict(d.X_test)
plt.figure(figsize=(20, 4))
# size = 20
for i in range(len(index)):
ax = plt.subplot(2, len(index), i + 1)
plt.imshow(d.X_test[index[i]].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(2, len(index), i + 1 + len(index))
plt.imshow(y_proba[index[i]].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
def plotting_weights(epochs):
ae = autoencoder(epochs)
output_layer = ae.get_layer('hidden2')
weights = output_layer.get_weights()[0]
print(weights.shape)
size = 20
plt.figure(figsize=(20, 4))
for j in range(3):
plt.gray()
plt.imshow(weights[j].reshape(12, 12))
plt.show()
def get_output():
w = initializers.RandomNormal(mean=0.0, stddev=0.05, seed=None)
new_model = Sequential()
new_model.add(Dense(400, activation='relu', kernel_initializer=w, input_dim = 784))
new_model.add(Dense(144, activation='sigmoid', kernel_initializer=w, input_dim = 400))
#new_model.add(Dense(784, activation='sigmoid', kernel_initializer=w, input_dim = 144))
new_model.compile(optimizer=Adam(lr=0.001), loss='binary_crossentropy', metrics=['acc'])
history = new_model.fit(d.X_train, d.X_train,
epochs=20,
batch_size=50,
shuffle=True,
validation_split=0.2)
y = new_model.predict(d.X_test)
elements, index = finding_index()
#return y.shape
def get_output2():
ae = autoencoder(5)
a =ae.layers[1].output()
init_op = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init_op) # execute init_op
# print the random values that we sample
print(a)
get_output2()
I've tried to just print(a) as well, but as I said, that returns me a tensor object. Can someone provide me some information how I can actually print those value? Thanks in advance!
Simplest:
import keras.backend as K
print(K.eval(ae.layers[1].output()))
This is equivalent to:
with tf.Session() as sess:
print(sess.run(a))
I find it more readable to simply use the keras.backend interface.

Resources