Gaussian Mixture Models for pixel clustering - python-3.x

I have a small set of aerial images where different terrains visible in the image have been have been labelled by human experts. For example, an image may contain vegetation, river, rocky mountains, farmland etc. Each image may have one or more of these labelled regions. Using this small labeled dataset, I would like to fit a gaussian mixture model for each of the known terrain types. After this is complete, I would have N number of GMMs for each N types of terrains that I might encounter in an image.
Now, given a new image, I would like to determine for each pixel, which terrain it belongs to by assigning the pixel to the most probable GMM.
Is this the correct line of thought ? And if yes, how can I go about clustering an image using GMMs

Its not clustering if you use labeled training data!
You can, however, use the labeling function of GMM clustering easily.
For this, compute the prior probabilities, mean and covariance matrixes, invert them. Then classify each pixel of the new image by the maximum probability density (weighted by prior probabilities) using the multivariate Gaussians from the training data.

Intuitively, your thought process is correct. If you already have the labels that makes this a lot easier.
For example, let's pick on a very well known and non-parametric algorithm like Known Nearest Neighbors https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
In this algorithm, you would take your new "pixels" which would then find the closest k-pixels like the one you are currently evaluating; where closest is determined by some distance function (usually Euclidean). From there, you would then assign this new pixel to the most frequently occurring classification label.
I am not sure if you are looking for a specific algorithm recommendation, but KNN would be a very good algorithm to begin testing this type of exercise out on. I saw you tagged sklearn, scikit learn has a very good KNN implementation I suggest you read up on.

Related

How can I build a good approximation of an unknown distribution when only having samples from it in order to draw from it in torch?

Say I just have random samples from the Distribution and no other data - e.g. a list of numbers - [1,15,30,4,etc.]. What's the best way to estimate the distribution to draw more samples from it in pytorch?
I am currently assuming that all samples come from a Normal distribution and just using the mean and std of the samples to build it and draw from it. The function, however, can be of any distribution.
samples = torch.Tensor([1,2,3,4,3,2,2,1])
Normal(samples.mean(), samples.std()).sample()
If you have enough samples (and preferably sample dimension is higher than 1), you could model the distribution using Variational Autoencoder or Generative Adversarial Networks (though I would stick with the first approach as it's simpler).
Basically, after correct implementation and training you would get deterministic decoder able to decode hidden code you would pass it (say vector of size 10 taken from normal distribution) into a value from your target distribution.
Note it might not be reliable at all though, it would be even harder if your samples are 1D only.
The best way depends on what you want to achieve. If you don't know the underlying distribution, you need to make assumptions about it and then fit a suitable distribution (that you know how to sample) to your samples. You may start with something simple like a Mixture of Gaussians (several normal distributions with different weightings).
Another way is to define a discrete distribution over the values you have. You will give each value the same probability, say p(x)=1/N. When you sample from it, you simply draw a random integer from [0,N) that points to one of your samples.

Why a CNN learns different feature maps

I understand (and please correct me if my understanding is wrong) that the primary purpose of a CNN is to reduce the number of parameters from what you would need if you were to use a fully connected NN. And CNN achieves this by extracting "features" of images.
CNN can do this because in a natural image, there are small features such as lines and elementary curves that may occur in an "invariant" fashion, and constitute the image much like elementary building blocks.
My question is: when we create layers of feature maps, say, 5 of them, and we get these by using the sliding window of a size, say, 5x5 on an image that has pixels of, say, 100x100, Initially, these feature maps are initialized as random number weight matrices, and must progressively adjust the weights with gradient descent right? But then, if we are getting these feature maps by using the exactly same sized windows, sliding in exactly the same ways (sharing the same starting point and the same stride value), on the exactly same image, how can these maps learn different features of the image? Won't they all come out the same, say, a line or a curve?
Is it due to the different initial values of the weight matrices? (I.e. some weight matrices are more receptive to learning a certain particular feature than others?)
Thanks!! I wrote my 4 questions/opinions and indexed them, for the ease of addressing them separately!

Representing classification confidence

I am working on a simple AI program that classifies shapes using unsupervised learning method. Essentially I use the number of sides and angles between the sides and generate aggregates percentages to an ideal value of a shape. This helps me create some fuzzingness in the result.
The problem is how do I represent the degree of error or confidence in the classification? For example: a small rectangle that looks very much like a square would yield night membership values from the two categories but can I represent the degree of error?
Thanks
Your confidence is based on used model. For example, if you are simply applying some rules based on the number of angles (or sides), you have some multi dimensional representation of objects:
feature 0, feature 1, ..., feature m
Nice, statistical approach
You can define some kind of confidence intervals, baesd on your empirical results, eg. you can fit multi-dimensional gaussian distribution to your empirical observations of "rectangle objects", and once you get a new object you simply check the probability of such value in your gaussian distribution, and have your confidence (which would be quite well justified with assumption, that your "observation" errors have normal distribution).
Distance based, simple approach
Less statistical approach would be to directly take your model's decision factor and compress it to the [0,1] interaval. For example, if you simply measure distance from some perfect shape to your new object in some metric (which yields results in [0,inf)) you could map it using some sigmoid-like function, eg.
conf( object, perfect_shape ) = 1 - tanh( distance( object, perfect_shape ) )
Hyperbolic tangent will "squash" values to the [0,1] interval, and the only remaining thing to do would be to select some scaling factor (as it grows quite quickly)
Such approach would be less valid in the mathematical terms, but would be similar to the approach taken in neural networks.
Relative approach
And more probabilistic approach could be also defined using your distance metric. If you have distances to each of your "perfect shapes" you can calculate the probability of an object being classified as some class with assumption, that classification is being performed at random, with probiability proportional to the inverse of the distance to the perfect shape.
dist(object, perfect_shape1) = d_1
dist(object, perfect_shape2) = d_2
dist(object, perfect_shape3) = d_3
...
inv( d_i )
conf(object, class_i) = -------------------
sum_j inv( d_j )
where
inv( d_i ) = max( d_j ) - d_i
Conclusions
First two ideas can be also incorporated into the third one to make use of knowledge of all the classes. In your particular example, the third approach should result in confidence of around 0.5 for both rectangle and circle, while in the first example it would be something closer to 0.01 (depending on how many so small objects would you have in the "training" set), which shows the difference - first two approaches show your confidence in classifing as a particular shape itself, while the third one shows relative confidence (so it can be low iff it is high for some other class, while the first two can simply answer "no classification is confident")
Building slightly on what lejlot has put forward; my preference would be to use the Mahalanobis distance with some squashing function. The Mahalanobis distance M(V, p) allows you to measure the distance between a distribution V and a point p.
In your case, I would use "perfect" examples of each class to generate the distribution V and p is the classification you want the confidence of. You can then use something along the lines of the following to be your confidence interval.
1-tanh( M(V, p) )

Canny algorithm is enough for creating a feature descriptor image and giving for SVM?

i retrieve contours from images by using canny algorithm. it's enough to have a descriptor image and put in SVM and find similarities? Or i need necessarily other features like elongation, perimeter, area ?
I talk about this, because inspired by this example: http://scikit-learn.org/dev/auto_examples/plot_digits_classification.html i give my image in greyscale first, in canny algorithm style second and in both cases my confusion matrix was plenty of 0 like precision, recall, f1-score, support measure
My advice is:
unless you have a low number of images in your database and/or the recognition is going to be really specific (not a random thing for example) I would highly recommend you to apply one or more features extractors such SIFT, Fourier Descriptors, Haralick's Features, Hough Transform to extract more details which could be summarised in a short vector.
Then you could apply SVM after all this in order to get more accuracy.

Is linear regression the same thing as ordinary least squares in SPSS?

I want to use a linear regression model, but I want to use ordinary least squares, which I think it is a type of linear regression. The software I use is SPSS. It only has linear regression, partial least squares and 2-stages least squares. I have no idea which one is ordinary least squares (OLS).
Yes, although 'linear regression' refers to any approach to model the relationship between one or more variables, OLS is the method used to find the simple linear regression of a set of data.
Linear regression is a vast term that just says we are finding a relationship between the dependent and independent variable(s), no matter what technique we are using.
OLS is just one of the technique to do linear reg.
Lets say,
error(e) = (observed value - predicted value)
Observed values - blue dots in picture
predicted values - points on the line(vertically below to the observed values)
The vertical lines below represent 'e'. We square them -> add them and get total err. And we try to reduce this total error.
For OLS, as the name says (ordinary least squared method), here we reduce the sum of all e^2 i.e. we try to make the error least.

Resources