Misconception on Type Classes and variable assignment in Haskell [duplicate] - haskell

This question already has answers here:
Why can a Num act like a Fractional?
(4 answers)
Closed 3 years ago.
Very new to Haskell and trying to understand how type classes and variables interact.
My first thing to play with was:
i :: a; i = 1
My expectation was that, since i was typed as generically as possible, I should be able to assign absolutely anything to it. (I know that I probably can't do anything with variable i, but that wasn't important.)
But, I was wrong. The above gives an error and requires that it be:
i :: Num a => a; i = 1
After playing around a bit more I came up with the following:
g :: Num a => a -> a; g a = a + 1
g 1
(returned 2)
gg :: Num a => a; gg = g 1
gg
(returned 2)
Ok... so far so good. Let's try a Fractional parameter.
g :: Num a => a -> a; g a = a + 1
g 1.3
(returned 2.3)
gg :: Num a => a; gg = g 1.3
(error)
So, please... what is it about variables that causes this? From a non-functional programming background, it "looks" like I have a function that returns a value with a type implementing Num and tried to assign it to a variable with a type implementing Num. Yet, the assignment fails.
I'm sure this is some basic misconception I have. It's probably the same thing that prevents the first example from working. I really want to get it straightened out before I start making far more serious conceptual errors.

i :: a; i = 1
My expectation was that, since i was typed as generically as possible, I should be able to assign absolutely anything to it. (I know that I probably can't do anything with variable i, but that wasn't important.)
No, it's the other way around. The type represents how that value can be used later on, i.e. it states that the user can use i pretending that it is of any type that might be required at that time. Essentially, the user chooses what the type a actually is, and the code defining i :: a must conform to any such choice of the user.
(By the way we usually call i = 1 "binding" or "definition", not "assignment" since that would imply we can reassign later on.)
gg :: Num a => a; gg = g 1.3
(error)
The same principle applies here. gg claims to be of any numeric type the user might want, but if the user later on chooses, say, Int the definition g 1.3 does not fit Int.
The user can choose the type using an explicit signature (print (gg :: Int)), or putting it into context that "forces" the type (print (length "hello" + gg) forces Int since length returns Int).
If you are familiar with "generics" in some other languages, you can draw a comparison with this code:
-- Haskell
i :: a
i = 1 -- type error
-- pseudo-Java
<A> A getI() {
return 1; -- type error
}
From a more theoretical perspective, you are thinking of the wrong quantifier. When you write i :: a, you are thinking i :: exists a . a (not a real Haskell type) which reads as "i is a value of some type (chosen at definition time)". Instead in Haskell i :: a means i :: forall a . a which reads as "i is a value of all types (any type that might be needed on use)". Hence it boils down to "exists" vs "forall", or to "who chooses what type type a actually is".

Related

Assigning constrained literal to a polymorphic variable

While learning haskell with Haskell Programming from first principles found an exercise that puzzles me.
Here is the short version:
For the following definition:
a) i :: Num a => a
i = 1
b) Try replacing the type signature with the following:
i :: a
The replacement gives me an error:
error:
• No instance for (Num a) arising from the literal ‘1’
Possible fix:
add (Num a) to the context of
the type signature for:
i' :: forall a. a
• In the expression: 1
In an equation for ‘i'’: i' = 1
|
38 | i' = 1
| ^
It is more or less clear for me how Num constraint arises.
What is not clear why assigning 1 to polymorphic variable i' gives the error.
Why this works:
id 1
while this one doesn't:
i' :: a
i' = 1
id i'
Should it be possible to assign a more specific value to a less specific and lose some type info if there are no issues?
This is a common misunderstanding. You probably have something in mind like, in a class-OO language,
class Object {};
class Num: Object { public: Num add(...){...} };
class Int: Num { int i; ... };
And then you would be able to use an Int value as the argument to a function that expects a Num argument, or a Num value as the argument to a function that expects an Object.
But that's not at all how Haskell's type classes work. Num is not a class of values (like, in the above example it would be the class of all values that belong to one of the subclasses). Instead, it's the class of all types that represent specific flavours of numbers.
How is that different? Well, a polymorphic literal like 1 :: Num a => a does not generate a specific Num value that can then be upcasted to a more general class. Instead, it expects the caller to first pick a concrete type in which you want to render the number, then generates the number immediately in that type, and afterwards the type never changes.
In other words, a polymorphic value has an implicit type-level argument. Whoever wants to use i needs to do so in a context where both
It is unambiguous what type a should be used. (It doesn't necessarily need to be fixed right there: the caller could also itself be a polymorphic function.)
The compiler can prove that this type a has a Num instance.
In C++, the analogue of Haskell typeclasses / polymorphic literal is not [sub]classes and their objects, but instead templates that are constrained to a concept:
#include <concepts>
template<typename A>
concept Num = std::constructible_from<A, int>; // simplified
template<Num A>
A poly_1() {
return 1;
}
Now, poly_1 can be used in any setting that demands a type which fulfills the Num concept, i.e. in particular a type that is constructible_from an int, but not in a context which requires some other type.
(In older C++ such a template would just be duck-typed, i.e. it's not explicit that it requires a Num setting but the compiler would just try to use it as such and then give a type error upon noticing that 1 can't be converted to the specified type.)
tl;dr
A value i' declared as i' :: a must be usable¹ in place of any other value, with no exception. 1 is no such a value, as it can't be used, say, where a String is expected, just to make one example.
Longer version
Let's start form a less uncontroversial scenario where you do need a type constraint:
plus :: a -> a -> a
plus x y = x + y
This does not compile, because the signature is equivalent to plus :: forall a. a -> a -> a, and it is plainly not true that the RHS, x + y, is meaningful for any common type a that x and y are inhabitants of. So you can fix the above by providing a constraint guaranteeing that + is possible between two as, and you can do so by putting Num a => right after :: (or even by giving up on polymorphic types and just change a to Int).
But there are functions that don't require any constraints on their arguments. Here's three of them:
id :: a -> a
id x = x
const :: a -> b -> a
const x _ = x
Data.Tuple.swap :: (a, b) -> (b, a)
Data.Tuple.swap (a, b) = (b, a)
You can pass anything to these functions, and they'll always work, because their definitions make no assumption whatsoever on what can be done with those objects, as they just shuffle/ditch them.
Similarly,
i' :: a
i' = 1
cannot compile because it's not true that 1 can represent a value of any type a. It can't represent a String, for instance, whereas the signature i' :: a is expressing the idea that you can put i' in any place, e.g. where a Int is expected, as much as where a generic Num is expected, or where a String is expected, and so on.
In other words, the above signature says that you can use i' in both of these statements:
j = i' + 1
k = i' ++ "str"
So the question is: just like we found some functions that have signatures not constraining their arguments in any way, do we have a value that inhabits every single type you can think of?
Yes, there are some values like that, and here are two of them:
i' :: a
i' = error ""
j' :: a
j' = undefined
They're all "bottoms", or ⊥.
(¹) By "usable" I mean that when you write it in some place where the code compiles, the code keeps compiling.

How does the :: operator syntax work in the context of bounded typeclass?

I'm learning Haskell and trying to understand the reasoning behind it's syntax design at the same time. Most of the syntax is beautiful.
But since :: normally is like a type annotation, How is it that this works:
Input: minBound::Int
Output: -2147483648
There is no separate operator: :: is a type annotation in that example. Perhaps the best way to understand this is to consider this code:
main = print (f minBound)
f :: Int -> Int
f = id
This also prints -2147483648. The use of minBound is inferred to be an Int because it is the parameter to f. Once the type has been inferred, the value for that type is known.
Now, back to:
main = print (minBound :: Int)
This works in the same way, except that minBound is known to be an Int because of the type annotation, rather than for some more complex reason. The :: isn't some binary operation; it just directs the compiler that the expression minBound has the type Int. Once again, since the type is known, the value can be determined from the type class.
:: still means "has type" in that example.
There are two ways you can use :: to write down type information. Type declarations, and inline type annotations. Presumably you've been used to seeing type declarations, as in:
plusOne :: Integer -> Integer
plusOne = (+1)
Here the plusOne :: Integer -> Integer line is a separate declaration about the identifier plusOne, informing the compiler what its type should be. It is then actually defined on the following line in another declaration.
The other way you can use :: is that you can embed type information in the middle of any expression. Any expression can be followed by :: and then a type, and it means the same thing as the expression on its own except with the additional constraint that it must have the given type. For example:
foo = ('a', 2) :: (Char, Integer)
bar = ('a', 2 :: Integer)
Note that for foo I attached the entire expression, so it is very little different from having used a separate foo :: (Char, Integer) declaration. bar is more interesting, since I gave a type annotation for just the 2 but used that within a larger expression (for the whole pair). 2 :: Integer is still an expression for the value 2; :: is not an operator that takes 2 as input and computes some result. Indeed if the 2 were already used in a context that requires it to be an Integer then the :: Integer annotation changes nothing at all. But because 2 is normally polymorphic in Haskell (it could fit into a context requiring an Integer, or a Double, or a Complex Float) the type annotation pins down that the type of this particular expression is Integer.
The use is that it avoids you having to restructure your code to have a separate declaration for the expression you want to attach a type to. To do that with my simple example would have required something like this:
two :: Integer
two = 2
baz = ('a', two)
Which adds a relatively large amount of extra code just to have something to attach :: Integer to. It also means when you're reading bar, you have to go read a whole separate definition to know what the second element of the pair is, instead of it being clearly stated right there.
So now we can answer your direct question. :: has no special or particular meaning with the Bounded type class or with minBound in particular. However it's useful with minBound (and other type class methods) because the whole point of type classes is to have overloaded names that do different things depending on the type. So selecting the type you want is useful!
minBound :: Int is just an expression using the value of minBound under the constraint that this particular time minBound is used as an Int, and so the value is -2147483648. As opposed to minBound :: Char which is '\NUL', or minBound :: Bool which is False.
None of those options mean anything different from using minBound where there was already some context requiring it to be an Int, or Char, or Bool; it's just a very quick and simple way of adding that context if there isn't one already.
It's worth being clear that both forms of :: are not operators as such. There's nothing terribly wrong with informally using the word operator for it, but be aware that "operator" has a specific meaning in Haskell; it refers to symbolic function names like +, *, &&, etc. Operators are first-class citizens of Haskell: we can bind them to variables1 and pass them around. For example I can do:
(|+|) = (+)
x = 1 |+| 2
But you cannot do this with ::. It is "hard-wired" into the language, just as the = symbol used for introducing definitions is, or the module Main ( main ) where syntax for module headers. As such there are lots of things that are true about Haskell operators that are not true about ::, so you need to be careful not to confuse yourself or others when you use the word "operator" informally to include ::.
1 Actually an operator is just a particular kind of variable name that is applied by writing it between two arguments instead of before them. The same function can be bound to operator and ordinary variables, even at the same time.
Just to add another example, with Monads you can play a little like this:
import Control.Monad
anyMonad :: (Monad m) => Int -> m Int
anyMonad x = (pure x) >>= (\x -> pure (x*x)) >>= (\x -> pure (x+2))
$> anyMonad 4 :: [Int]
=> [18]
$> anyMonad 4 :: Either a Int
=> Right 18
$> anyMonad 4 :: Maybe Int
=> Just 18
it's a generic example telling you that the functionality may change with the type, another example:

How does return statement work in Haskell? [duplicate]

This question already has answers here:
What's so special about 'return' keyword
(3 answers)
Closed 5 years ago.
Consider these functions
f1 :: Maybe Int
f1 = return 1
f2 :: [Int]
f2 = return 1
Both have the same statement return 1. But the results are different. f1 gives value Just 1 and f2 gives value [1]
Looks like Haskell invokes two different versions of return based on return type. I like to know more about this kind of function invocation. Is there a name for this feature in programming languages?
This is a long meandering answer!
As you've probably seen from the comments and Thomas's excellent (but very technical) answer You've asked a very hard question. Well done!
Rather than try to explain the technical answer I've tried to give you a broad overview of what Haskell does behind the scenes without diving into technical detail. Hopefully it will help you to get a big picture view of what's going on.
return is an example of type inference.
Most modern languages have some notion of polymorphism. For example var x = 1 + 1 will set x equal to 2. In a statically typed language 2 will usually be an int. If you say var y = 1.0 + 1.0 then y will be a float. The operator + (which is just a function with a special syntax)
Most imperative languages, especially object oriented languages, can only do type inference one way. Every variable has a fixed type. When you call a function it looks at the types of the argument and chooses a version of that function that fits the types (or complains if it can't find one).
When you assign the result of a function to a variable the variable already has a type and if it doesn't agree with the type of the return value you get an error.
So in an imperative language the "flow" of type deduction follows time in your program Deduce the type of a variable, do something with it and deduce the type of the result. In a dynamically typed language (such as Python or javascript) the type of a variable is not assigned until the value of the variable is computed (which is why there don't seem to be types). In a statically typed language the types are worked out ahead of time (by the compiler) but the logic is the same. The compiler works out what the types of variables are going to be, but it does so by following the logic of the program in the same way as the program runs.
In Haskell the type inference also follows the logic of the program. Being Haskell it does so in a very mathematically pure way (called System F). The language of types (that is the rules by which types are deduced) are similar to Haskell itself.
Now remember Haskell is a lazy language. It doesn't work out the value of anything until it needs it. That's why it makes sense in Haskell to have infinite data structures. It never occurs to Haskell that a data structure is infinite because it doesn't bother to work it out until it needs to.
Now all that lazy magic happens at the type level too. In the same way that Haskell doesn't work out what the value of an expression is until it really needs to, Haskell doesn't work out what the type of an expression is until it really needs to.
Consider this function
func (x : y : rest) = (x,y) : func rest
func _ = []
If you ask Haskell for the type of this function it has a look at the definition, sees [] and : and deduces that it's working with lists. But it never needs to look at the types of x and y, it just knows that they have to be the same because they end up in the same list. So it deduces the type of the function as [a] -> [a] where a is a type that it hasn't bothered to work out yet.
So far no magic. But it's useful to notice the difference between this idea and how it would be done in an OO language. Haskell doesn't convert the arguments to Object, do it's thing and then convert back. Haskell just hasn't been asked explicitly what the type of the list is. So it doesn't care.
Now try typing the following into ghci
maxBound - length ""
maxBound : "Hello"
Now what just happened !? minBound bust be a Char because I put it on the front of a string and it must be an integer because I added it to 0 and got a number. Plus the two values are clearly very different.
So what is the type of minBound? Let's ask ghci!
:type minBound
minBound :: Bounded a => a
AAargh! what does that mean? Basically it means that it hasn't bothered to work out exactly what a is, but is has to be Bounded if you type :info Bounded you get three useful lines
class Bounded a where
minBound :: a
maxBound :: a
and a lot of less useful lines
So if a is Bounded there are values minBound and maxBound of type a.
In fact under the hood Bounded is just a value, it's "type" is a record with fields minBound and maxBound. Because it's a value Haskell doesn't look at it until it really needs to.
So I appear to have meandered somewhere in the region of the answer to your question. Before we move onto return (which you may have noticed from the comments is a wonderfully complex beast.) let's look at read.
ghci again
read "42" + 7
read "'H'" : "ello"
length (read "[1,2,3]")
and hopefully you won't be too surprised to find that there are definitions
read :: Read a => String -> a
class Read where
read :: String -> a
so Read a is just a record containing a single value which is a function String -> a. Its very tempting to assume that there is one read function which looks at a string, works out what type is contained in the string and returns that type. But it does the opposite. It completely ignores the string until it's needed. When the value is needed, Haskell first works out what type it's expecting, once it's done that it goes and gets the appropriate version of the read function and combines it with the string.
now consider something slightly more complex
readList :: Read a => [String] -> a
readList strs = map read strs
under the hood readList actually takes two arguments
readList' (Read a) -> [String] -> [a]
readList' {read = f} strs = map f strs
Again as Haskell is lazy it only bothers looking at the arguments when it's needs to find out the return value, at that point it knows what a is, so the compiler can go and fine the right version of Read. Until then it doesn't care.
Hopefully that's given you a bit of an idea of what's happening and why Haskell can "overload" on the return type. But it's important to remember it's not overloading in the conventional sense. Every function has only one definition. It's just that one of the arguments is a bag of functions. read_str doesn't ever know what types it's dealing with. It just knows it gets a function String -> a and some Strings, to do the application it just passes the arguments to map. map in turn doesn't even know it gets strings. When you get deeper into Haskell it becomes very important that functions don't know very much about the types they're dealing with.
Now let's look at return.
Remember how I said that the type system in Haskell was very similar to Haskell itself. Remember that in Haskell functions are just ordinary values.
Does this mean I can have a type that takes a type as an argument and returns another type? Of course it does!
You've seen some type functions Maybe takes a type a and returns another type which can either be Just a or Nothing. [] takes a type a and returns a list of as. Type functions in Haskell are usually containers. For example I could define a type function BinaryTree which stores a load of a's in a tree like structure. There are of course lots of much stranger ones.
So, if these type functions are similar to ordinary types I can have a typeclass that contains type functions. One such typeclass is Monad
class Monad m where
return a -> m a
(>>=) m a (a -> m b) -> m b
so here m is some type function. If I want to define Monad for m I need to define return and the scary looking operator below it (which is called bind)
As others have pointed out the return is a really misleading name for a fairly boring function. The team that designed Haskell have since realised their mistake and they're genuinely sorry about it. return is just an ordinary function that takes an argument and returns a Monad with that type in it. (You never asked what a Monad actually is so I'm not going to tell you)
Let's define Monad for m = Maybe!
First I need to define return. What should return x be? Remember I'm only allowed to define the function once, so I can't look at x because I don't know what type it is. I could always return Nothing, but that seems a waste of a perfectly good function. Let's define return x = Just x because that's literally the only other thing I can do.
What about the scary bind thing? what can we say about x >>= f? well x is a Maybe a of some unknown type a and f is a function that takes an a and returns a Maybe b. Somehow I need to combine these to get a Maybe b`
So I need to define Nothing >== f. I can't call f because it needs an argument of type a and I don't have a value of type a I don't even know what 'a' is. I've only got one choice which is to define
Nothing >== f = Nothing
What about Just x >>= f? Well I know x is of type a and f takes a as an argument, so I can set y = f a and deduce that y is of type b. Now I need to make a Maybe b and I've got a b so ...
Just x >>= f = Just (f x)
So I've got a Monad! what if m is List? well I can follow a similar sort of logic and define
return x = [x]
[] >>= f = []
(x : xs) >>= a = f x ++ (xs >>= f)
Hooray another Monad! It's a nice exercise to go through the steps and convince yourself that there's no other sensible way of defining this.
So what happens when I call return 1?
Nothing!
Haskell's Lazy remember. The thunk return 1 (technical term) just sits there until someone needs the value. As soon as Haskell needs the value it know what type the value should be. In particular it can deduce that m is List. Now that it knows that Haskell can find the instance of Monad for List. As soon as it does that it has access to the correct version of return.
So finally Haskell is ready To call return, which in this case returns [1]!
The return function is from the Monad class:
class Applicative m => Monad (m :: * -> *) where
...
return :: a -> m a
So return takes any value of type a and results in a value of type m a. The monad, m, as you've observed is polymorphic using the Haskell type class Monad for ad hoc polymorphism.
At this point you probably realize return is not an good, intuitive, name. It's not even a built in function or a statement like in many other languages. In fact a better-named and identically-operating function exists - pure. In almost all cases return = pure.
That is, the function return is the same as the function pure (from the Applicative class) - I often think to myself "this monadic value is purely the underlying a" and I try to use pure instead of return if there isn't already a convention in the codebase.
You can use return (or pure) for any type that is a class of Monad. This includes the Maybe monad to get a value of type Maybe a:
instance Monad Maybe where
...
return = pure -- which is from Applicative
...
instance Applicative Maybe where
pure = Just
Or for the list monad to get a value of [a]:
instance Applicative [] where
{-# INLINE pure #-}
pure x = [x]
Or, as a more complex example, Aeson's parse monad to get a value of type Parser a:
instance Applicative Parser where
pure a = Parser $ \_path _kf ks -> ks a

Haskell Type Coercion

I trying to wrap my head around Haskell type coercion. Meaning, when does can one pass a value into a function without casting and how that works. Here is a specific example, but I am looking for a more general explanation I can use going forward to try and understand what is going on:
Prelude> 3 * 20 / 4
15.0
Prelude> let c = 20
Prelude> :t c
c :: Integer
Prelude> 3 * c / 4
<interactive>:94:7:
No instance for (Fractional Integer)
arising from a use of `/'
Possible fix: add an instance declaration for (Fractional Integer)
In the expression: 3 * c / 4
In an equation for `it': it = 3 * c / 4
The type of (/) is Fractional a => a -> a -> a. So, I'm guessing that when I do "3 * 20" using literals, Haskell somehow assumes that the result of that expression is a Fractional. However, when a variable is used, it's type is predefined to be Integer based on the assignment.
My first question is how to fix this. Do I need to cast the expression or convert it somehow?
My second question is that this seems really weird to me that you can't do basic math without having to worry so much about int/float types. I mean there's an obvious way to convert automatically between these, why am I forced to think about this and deal with it? Am I doing something wrong to begin with?
I am basically looking for a way to easily write simple arithmetic expressions without having to worry about the neaty greaty details and keeping the code nice and clean. In most top-level languages the compiler works for me -- not the other way around.
If you just want the solution, look at the end.
You nearly answered your own question already. Literals in Haskell are overloaded:
Prelude> :t 3
3 :: Num a => a
Since (*) also has a Num constraint
Prelude> :t (*)
(*) :: Num a => a -> a -> a
this extends to the product:
Prelude> :t 3 * 20
3 * 20 :: Num a => a
So, depending on context, this can be specialized to be of type Int, Integer, Float, Double, Rational and more, as needed. In particular, as Fractional is a subclass of Num, it can be used without problems in a division, but then the constraint will become
stronger and be for class Fractional:
Prelude> :t 3 * 20 / 4
3 * 20 / 4 :: Fractional a => a
The big difference is the identifier c is an Integer. The reason why a simple let-binding in GHCi prompt isn't assigned an overloaded type is the dreaded monomorphism restriction. In short: if you define a value that doesn't have any explicit arguments,
then it cannot have overloaded type unless you provide an explicit type signature.
Numeric types are then defaulted to Integer.
Once c is an Integer, the result of the multiplication is Integer, too:
Prelude> :t 3 * c
3 * c :: Integer
And Integer is not in the Fractional class.
There are two solutions to this problem.
Make sure your identifiers have overloaded type, too. In this case, it would
be as simple as saying
Prelude> let c :: Num a => a; c = 20
Prelude> :t c
c :: Num a => a
Use fromIntegral to cast an integral value to an arbitrary numeric value:
Prelude> :t fromIntegral
fromIntegral :: (Integral a, Num b) => a -> b
Prelude> let c = 20
Prelude> :t c
c :: Integer
Prelude> :t fromIntegral c
fromIntegral c :: Num b => b
Prelude> 3 * fromIntegral c / 4
15.0
Haskell will never automatically convert one type into another when you pass it to a function. Either it's compatible with the expected type already, in which case no coercion is necessary, or the program fails to compile.
If you write a whole program and compile it, things generally "just work" without you having to think too much about int/float types; so long as you're consistent (i.e. you don't try to treat something as an Int in one place and a Float in another) the constraints just flow through the program and figure out the types for you.
For example, if I put this in a source file and compile it:
main = do
let c = 20
let it = 3 * c / 4
print it
Then everything's fine, and running the program prints 15.0. You can see from the .0 that GHC successfully figured out that c must be some kind of fractional number, and made everything work, without me having to give any explicit type signatures.
c can't be an integer because the / operator is for mathematical division, which isn't defined on integers. The operation of integer division is represented by the div function (usable in operator fashion as x `div` y). I think this might be what is tripping you up in your whole program? This is unfortunately just one of those things you have to learn by getting tripped up by it, if you're used to the situation in many other languages where / is sometimes mathematical division and sometimes integer division.
It's when you're playing around in the interpreter that things get messy, because there you tend to bind values with no context whatsoever. In interpreter GHCi has to execute let c = 20 on its own, because you haven't entered 3 * c / 4 yet. It has no way of knowing whether you intend that 20 to be an Int, Integer, Float, Double, Rational, etc
Haskell will pick a default type for numeric values; otherwise if you never use any functions that only work on one particular type of number you'd always get an error about ambiguous type variables. This normally works fine, because these default rules are applied while reading the whole module and so take into account all the other constraints on the type (like whether you've ever used it with /). But here there are no other constraints it can see, so the type defaulting picks the first cab off the rank and makes c an Integer.
Then, when you ask GHCi to evaluate 3 * c / 4, it's too late. c is an Integer, so must 3 * c be, and Integers don't support /.
So in the interpreter, yes, sometimes if you don't give an explicit type to a let binding GHC will pick an incorrect type, especially with numeric types. After that, you're stuck with whatever operations are supported by the concrete type GHCi picked, but when you get this kind of error you can always rebind the variable; e.g. let c = 20.0.
However I suspect in your real program the problem is simply that the operation you wanted was actually div rather than /.
Haskell is a bit unusual in this way. Yes you can't divide to integers together but it's rarely a problem.
The reason is that if you look at the Num typeclass, there's a function fromIntegral this allows you to convert literals into the appropriate type. This with type inference alleviates 99% of the cases where it'd be a problem. Quick example:
newtype Foo = Foo Integer
deriving (Show, Eq)
instance Num Foo where
fromInteger _ = Foo 0
negate = undefined
abs = undefined
(+) = undefined
(-) = undefined
(*) = undefined
signum = undefined
Now if we load this into GHCi
*> 0 :: Foo
Foo 0
*> 1 :: Foo
Foo 0
So you see we are able to do some pretty cool things with how GHCi parses a raw integer. This has a lot of practical uses in DSL's that we won't talk about here.
Next question was how to get from a Double to an Integer or vice versa. There's a function for that.
In the case of going from an Integer to a Double, we'd use fromInteger as well. Why?
Well the type signature for it is
(Num a) => Integer -> a
and since we can use (+) with Doubles we know they're a Num instance. And from there it's easy.
*> 0 :: Double
0.0
Last piece of the puzzle is Double -> Integer. Well a brief search on Hoogle shows
truncate
floor
round
-- etc ...
I'll leave that to you to search.
Type coercion in Haskell isn't automatic (or rather, it doesn't actually exist). When you write the literal 20 it's inferred to be of type Num a => a (conceptually anyway. I don't think it works quite like that) and will, depending on the context in which it is used (i.e. what functions you pass it to) be instantiated with an appropitiate type (I believe if no further constraints are applied, this will default to Integer when you need a concrete type at some point). If you need a different kind of Num, you need to convert the numbers e.g. (3* fromIntegral c / 4) in your example.
The type of (/) is Fractional a => a -> a -> a.
To divide Integers, use div instead of (/). Note that the type of div is
div :: Integral a => a -> a -> a
In most top-level languages the compiler works for me -- not the other way around.
I argue that the Haskell compiler works for you just as much, if not more so, than those of other languages you have used. Haskell is a very different language than the traditional imperative languages (such as C, C++, Java, etc.) you are probably used to. This means that the compiler works differently as well.
As others have stated, Haskell will never automatically coerce from one type to another. If you have an Integer which needs to be used as a Float, you need to do the conversion explicitly with fromInteger.

Can GADTs be used to prove type inequalities in GHC?

So, in my ongoing attempts to half-understand Curry-Howard through small Haskell exercises, I've gotten stuck at this point:
{-# LANGUAGE GADTs #-}
import Data.Void
type Not a = a -> Void
-- | The type of type equality proofs, which can only be instantiated if a = b.
data Equal a b where
Refl :: Equal a a
-- | Derive a contradiction from a putative proof of #Equal Int Char#.
intIsNotChar :: Not (Equal Int Char)
intIsNotChar intIsChar = ???
Clearly the type Equal Int Char has no (non-bottom) inhabitants, and thus semantically there ought to be an absurdEquality :: Equal Int Char -> a function... but for the life of me I can't figure out any way to write one other than using undefined.
So either:
I'm missing something, or
There is some limitation of the language that makes this an impossible task, and I haven't managed to understand what it is.
I suspect the answer is something like this: the compiler is unable to exploit the fact that there are no Equal constructors that don't have a = b. But if that is so, what makes it true?
Here's a shorter version of Philip JF's solution, which is the way dependent type theorists have been refuting equations for years.
type family Discriminate x
type instance Discriminate Int = ()
type instance Discriminate Char = Void
transport :: Equal a b -> Discriminate a -> Discriminate b
transport Refl d = d
refute :: Equal Int Char -> Void
refute q = transport q ()
In order to show that things are different, you have to catch them behaving differently by providing a computational context which results in distinct observations. Discriminate provides exactly such a context: a type-level program which treats the two types differently.
It is not necessary to resort to undefined to solve this problem. Total programming sometimes involves rejecting impossible inputs. Even where undefined is available, I would recommend not using it where a total method suffices: the total method explains why something is impossible and the typechecker confirms; undefined merely documents your promise. Indeed, this method of refutation is how Epigram dispenses with "impossible cases" whilst ensuring that a case analysis covers its domain.
As for computational behaviour, note that refute, via transport is necessarily strict in q and that q cannot compute to head normal form in the empty context, simply because no such head normal form exists (and because computation preserves type, of course). In a total setting, we'd be sure that refute would never be invoked at run time. In Haskell, we're at least certain that its argument will diverge or throw an exception before we're obliged to respond to it. A lazy version, such as
absurdEquality e = error "you have a type error likely to cause big problems"
will ignore the toxicity of e and tell you that you have a type error when you don't. I prefer
absurdEquality e = e `seq` error "sue me if this happens"
if the honest refutation is too much like hard work.
I don't understand the problem with using undefined every type is inhabited by bottom in Haskell. Our language is not strongly normalizing... You are looking for the wrong thing. Equal Int Char leads to type errors not nice well kept exceptions. See
{-# LANGUAGE GADTs, TypeFamilies #-}
data Equal a b where
Refl :: Equal a a
type family Pick cond a b
type instance Pick Char a b = a
type instance Pick Int a b = b
newtype Picker cond a b = Picker (Pick cond a b)
pick :: b -> Picker Int a b
pick = Picker
unpick :: Picker Char a b -> a
unpick (Picker x) = x
samePicker :: Equal t1 t2 -> Picker t1 a b -> Picker t2 a b
samePicker Refl x = x
absurdCoerce :: Equal Int Char -> a -> b
absurdCoerce e x = unpick (samePicker e (pick x))
you could use this to create the function you want
absurdEquality e = absurdCoerce e ()
but that will produce undefined behavior as its computation rule. false should cause programs to abort, or at the very least run for ever. Aborting is the computation rule that is akin to turning minimal logic into intiutionistic logic by adding not. The correct definition is
absurdEquality e = error "you have a type error likely to cause big problems"
as to the question in the title: essentially no. To the best of my knowledge, type inequality is not representable in a practical way in current Haskell. Coming changes to the type system may lead to this getting nicer, but as of right now, we have equalities but not inequalites.

Resources