handling large non-sparse matrices for computing SVD - python-3.x

I have a large matrix (right now about 450000 x 50, might be even larger) that I want to compute its SVD decomposition. The matrix isn't sparse and numpy can't seem to handle it and exits with MemoryError.
I tried using np.float16 and it didn't help. python's table package can't seem to help either (since I need to use the whole matrix later to find eigenvalues).
Do any of you have an idea how can I compute and use massive matrices?

Related

Eigenvectors in Julia vs Numpy

I'm currently working to diagonalize a 5000x5000 Hermitian matrix, and I find that when I use Julia's eigen function in the LinearAlgebra module, which produces both the eigenvalues and eigenvectors, I get different results for the eigenvectors compared to when I solve the problem using numpy's np.linalg.eigh function. I believe both of them use BLAS, but I'm not sure what else they may be using that is different.
Has anyone else experienced this/knows what is going on?
numpy.linalg.eigh(a, UPLO='L') is a different algorithm. It assumes the matrix is symmetric and takes the lower triangular matrix (as a default) to more efficiently compute the decomposition.
The equivalent to Julia's LinearAlgebra.eigen() is numpy.linalg.eig. You should get the same result if you turn your matrix in Julia into a Symmetric(A, uplo=:L) matrix before feeding it into LinearAlgebra.eigen().
Check out numpy's docs on eig and eigh. Whilst Julia's standard LinearAlgebra capabilities are here. If you go down to the special matrices sections, it details what special methods it uses depending on the type of special matrix thanks to multiple dispatch.

Find top K cosine similar vectors to a given vector efficiently

The problem:
Suppose I have a group of around 1,000,000 short documents D (no more than 50 words each), and I want to let users to supply a document from the same group D, and and get the top K similar documents from D.
My approach:
My first approach was to preprocess the group D by applying simple tf-idf, and after I have vector for each document, which is extremely sparse, to use a simple nearest neighbours algorithm based on cosine similarity.
Then, on query time, to justuse my static nearest neighbours table which its size is 1,000,000 x K, without any further calculations.
After applying tf-idf, I got vectors in size ~200,000, which means now I have a very sparse table (that can be stored efficiently in memory using sparse vectors) in size 1,000,000 x 200,000.
However, calculating the nearest neighbours model took me more than one day, and still haven't finished.
I tried to lower the vectors dimension by applying HashingTF, that utilizes the hasing trick, instead, so I can set the dimension to a constant one (in my case, i used 2^13 for uninfied hashing), but still I get the same bad performance.
Some technical information:
I use Spark 2.0 for the tf-idf calculation, and sklearn NearestNeighbours on the collected data.
Is thier any more efficient way to achieve that goal?
Thanks in advance.
Edit:
I had an idea to try a LSH based approximation similarity algorithm like those implemented in spark as described here, but could not find one that supports the 'cosine' similarity metric.
There were some requirements for the algorithm on the relation between training instances and the dimensions of your vectors , but you can try DIMSUM.
You can find the paper here.

PCA in Spark MLlib and Spark ML

Spark now has two machine learning libraries - Spark MLlib and Spark ML. They do somewhat overlap in what is implemented, but as I understand (as a person new to the whole Spark ecosystem) Spark ML is the way to go and MLlib is still around mostly for backward compatibility.
My question is very concrete and related to PCA. In MLlib implementation there seems to be a limitation of the number of columns
spark.mllib supports PCA for tall-and-skinny matrices stored in row-oriented format and any Vectors.
Also, if you look at the Java code example there is also this
The number of columns should be small, e.g, less than 1000.
On the other hand, if you look at ML documentation, there are no limitations mentioned.
So, my question is - does this limitation also exists in Spark ML? And if so, why the limitation and is there any workaround to be able to use this implementation even if the number of columns is large?
PCA consists in finding a set of decorrelated random variables that you can represent your data with, sorted in decreasing order with respect to the amount of variance they retain.
These variables can be found by projecting your data points onto a specific orthogonal subspace. If your (mean-centered) data matrix is X, this subspace is comprised of the eigenvectors of X^T X.
When X is large, say of dimensions n x d, you can compute X^T X by computing the outer product of each row of the matrix by itself, then adding all the results up. This is of course amenable to a simple map-reduce procedure if d is small, no matter how large n is. That's because the outer product of each row by itself is a d x d matrix, which will have to be manipulated in main memory by each worker. That's why you might run into trouble when handling many columns.
If the number of columns is large (and the number of rows not so much so) you can indeed compute PCA. Just compute the SVD of your (mean-centered) transposed data matrix and multiply it by the resulting eigenvectors and the inverse of the diagonal matrix of eigenvalues. There's your orthogonal subspace.
Bottom line: if the spark.ml implementation follows the first approach every time, then the limitation should be the same. If they check the dimensions of the input dataset to decide whether they should go for the second approach, then you won't have problems dealing with large numbers of columns if the number of rows is small.
Regardless of that, the limit is imposed by how much memory your workers have, so perhaps they let users hit the ceiling by themselves, rather than suggesting a limitation that may not apply for some. That might be the reason why they decided not to mention the limitation in the new docs.
Update: The source code reveals that they do take the first approach every time, regardless of the dimensionality of the input. The actual limit is 65535, and at 10,000 they issue a warning.

does Theano's symbolic matrix inverse "know" about structured matrices?

In my application I am computing the inverse of a block tridiagonal matrix A - will Theano's matrix inverse account for that structure (by using a more efficient matrix inverse algorithm)?
Further, I only need the diagonal and first off diagonal blocks of the resulting inverse matrix. Is there a way of preventing Theano from computing the remaining blocks?
Generally, I'm curious whether it would be worth implementing a forward/backward block tridagonal matrix inverse algorithm myself.
As of April 2015 Theano matrix inverse function won't do it directly:
http://deeplearning.net/software/theano/library/tensor/nlinalg.html#theano.tensor.nlinalg.MatrixInverse
Theano do not have many optimization and function related to that type of methods. It partially wrap what is under numpy.linalg (most of it) and some of scipy.linalg:
http://deeplearning.net/software/theano/library/tensor/slinalg.html
So you are better in the short term to do it with numpy/scipy directly.
If you want to add those feature to Theano, this can be done. But it need someone with the time and willingness to do it.

SVD and singular / non-singular matrices

I need to use the SVD form of a matrix to extract concepts from a series of documents. My matrix is of the form A = [d1, d2, d3 ... dN] where di is a binary vector of M components. Then the svd decomposition gives me svd(A) = U x S x V' with S containing the singular values.
I use SVDLIBC to do the processing in nodejs (using a small module I wrote to use it). It seemed to work all well, but I noticed something quite weird in the running time behavior depending on the state of my matrix (where N, M are growing, but already above 1000 for each).
First, I didn't consider extracting the same document vectors, but now after some tests, it looks like adding a document twice sometimes speeds the processing extraordinarily.
Do I have to make sure that each of the columns of A are pairwise-independent? Are they required to be all linearly independent? (I thought nope, since SVD just seems to be performing its job well even with some columns being exactly the same, it will simply show in the resulting decomposition which columns / rows are useless by having 0 components in U or V)
Now that it sometimes takes way too much time to compute the SVD of my big matrix, I was trying to reduce its size by removing the same columns, but I found out that actually adding dummy same vectors can make it way faster. Is that normal? What's happening?
Logically, I'd say that I want my matrix to contain as much information as possible, and thus
[A] Remove all same columns, and in the best case, maybe
[B] Remove linearly dependent columns.
Doing [A] seems pretty simple and not computationally too expensive, I could hash my vectors at construction to check what are the possibly same vectors, and then spend time to check these, but are there good computation techniques for [A] and [B]?
(I'd appreciate for [A] to not have to check equality of a new vector with the whole past vectors the brute-force way, and as for [B], I don't know any good way to check it / do it).
Added related question: about my second question, why would SVD's running time behavior change so massively by just adding one similar column? Is that a normal possible behavior, or does it mean I should look for a bug in SVDLIBC?
It is difficult to say where the problem is without samples of fast and slow input matrices. But, since one of the primary uses of the SVD is to provide a rotation that eliminates covariance, redundant (or the same) columns should not cause problems.
To answer your question about if the slow behavior being a bug in the library you're using, I'd suggest trying to retrieve the SVD of the same matrix using another tool. For example, in Octave, retrieve an SVD of your matrix to compare runtimes:
[U, S, V] = svd(A)

Resources