How to compute a similarity between two vectors with heterogeneous attributes - statistics

I have an optimization problem where I have a set of providers P selling objects Op of different types with different performance vectors Pv=[p1, p2, p3, ..., pn]and a set of client requests R asking for objects Or with an expected performance vectors Er=[e1, e2, ..., en].
I would like to compute what are the provider's objects that are close enough to the ones requested by clients given the performance vectors, I have looked at some measures like : Euclidian squarred distance but I am not sure how to use it since the units of the performance vectors are different i.e p1 is measured in seconds, p2 is measured in dollars and so on...
Could anyone shed some light and suggest a methodology ?

The first idea you should try is to scale each of your features independently before comparing them.
For instance, get all your p1 samples, compute mean and standard deviation, then transform your samples to (s - mean)/std. Do this for each of your features, except for those that are already binary (0/1).
Then you can use Euclidian distance as a first trial for analyze if the points are far or not.
Similarity measures are something different, yet similar, you can use something like e^(-distance(x, y)) to get a similarity between 0 and 1, and there are other measures that could try as well. You should use these on the scaled data, not the original one.

Related

Cluster Scenario: Difference between the computedCost of 2 points used as similarity measure between points. Is it applicable?

I want to have a measure of similarity between two points in a cluster.
Would the similarity calculated this way be an acceptable measure of similarity between the two datapoint?
Say I have to vectors: vector A and vector B that are in the same cluster. I have trained a cluster which is denoted by model and then model.computeCost() computes thesquared distance between the input point and the corresponding cluster center.
(I am using Apache Spark MLlib)
val costA = model.computeCost(A)
val costB = model.computeCost(B)
val dissimilarity = |cost(A)-cost(B)|
Dissimilarity i.e. the higher the value, the more unlike each other they are.
If you are just asking is this a valid metric then the answer is almost, it is a valid pseudometric if only .computeCost is deterministic.
For simplicity i denote f(A) := model.computeCost(A) and d(A, B) := |f(A)-f(B)|
Short proof: d is a L1 applied to an image of some function, thus is a pseudometric itself, and a metric if f is injective (in general, yours is not).
Long(er) proof:
d(A,B) >= 0 yes, since |f(A) - f(B)| >= 0
d(A,B) = d(B,A) yes, since |f(A) - f(B)| = |f(B) - f(A)|
d(A,B) = 0 iff A=B, no, this is why it is pseudometric, since you can have many A != B such that f(A) = f(B)
d(A,B) + d(B,C) <= d(A,C), yes, directly from the same inequality for absolute values.
If you are asking will it work for your problem, then the answer is it might, depends on the problem. There is no way to answer this without analysis of your problem and data. As shown above this is a valid pseudometric, thus it will measure something decently behaving from mathematical perspective. Will it work for your particular case is completely different story. The good thing is most of the algorithms which work for metrics will work with pseudometrics as well. The only difference is that you simply "glue together" points which have the same image (f(A)=f(B)), if this is not the issue for your problem - then you can apply this kind of pseudometric in any metric-based reasoning without any problems. In practise, that means that if your f is
computes the sum of squared distances between the input point and the corresponding cluster center
this means that this is actually a distance to closest center (there is no summation involved when you consider a single point). This would mean, that 2 points in two separate clusters are considered identical when they are equally far away from their own clusters centers. Consequently your measure captures "how different are relations of points and their respective clusters". This is a well defined, indirect dissimilarity computation, however you have to be fully aware what is happening before applying it (since it will have specific consequences).
Your "cost" is actually the distance to the center.
Points that have the same distance to the center are considered to be identical (distance 0), which creates a really odd pseudonetric, because it ignores where on the circle of that distance points are.
It's not very likely this will work on your problem.

standard error of addition, subtraction, multiplication and ratio

Let's say, I have two random variables,x and y, both of them have n observations. I've used a forecasting method to estimate xn+1 and yn+1, and I also got the standard error for both xn+1 and yn+1. So my question is that what the formula would be if I want to know the standard error of xn+1 + yn+1, xn+1 - yn+1, (xn+1)*(yn+1) and (xn+1)/(yn+1), so that I can calculate the prediction interval for the 4 combinations. Any thought would be much appreciated. Thanks.
Well, the general topic you need to look at is called "change of variables" in mathematical statistics.
The density function for a sum of random variables is the convolution of the individual densities (but only if the variables are independent). Likewise for the difference. In special cases, that convolution is easy to find. For example, for Gaussian variables the density of the sum is also a Gaussian.
For product and quotient, there aren't any simple results, except in special cases. For those, you might as well compute the result directly, maybe by sampling or other numerical methods.
If your variables x and y are not independent, that complicates the situation. But even then, I think sampling is straightforward.

Representing classification confidence

I am working on a simple AI program that classifies shapes using unsupervised learning method. Essentially I use the number of sides and angles between the sides and generate aggregates percentages to an ideal value of a shape. This helps me create some fuzzingness in the result.
The problem is how do I represent the degree of error or confidence in the classification? For example: a small rectangle that looks very much like a square would yield night membership values from the two categories but can I represent the degree of error?
Thanks
Your confidence is based on used model. For example, if you are simply applying some rules based on the number of angles (or sides), you have some multi dimensional representation of objects:
feature 0, feature 1, ..., feature m
Nice, statistical approach
You can define some kind of confidence intervals, baesd on your empirical results, eg. you can fit multi-dimensional gaussian distribution to your empirical observations of "rectangle objects", and once you get a new object you simply check the probability of such value in your gaussian distribution, and have your confidence (which would be quite well justified with assumption, that your "observation" errors have normal distribution).
Distance based, simple approach
Less statistical approach would be to directly take your model's decision factor and compress it to the [0,1] interaval. For example, if you simply measure distance from some perfect shape to your new object in some metric (which yields results in [0,inf)) you could map it using some sigmoid-like function, eg.
conf( object, perfect_shape ) = 1 - tanh( distance( object, perfect_shape ) )
Hyperbolic tangent will "squash" values to the [0,1] interval, and the only remaining thing to do would be to select some scaling factor (as it grows quite quickly)
Such approach would be less valid in the mathematical terms, but would be similar to the approach taken in neural networks.
Relative approach
And more probabilistic approach could be also defined using your distance metric. If you have distances to each of your "perfect shapes" you can calculate the probability of an object being classified as some class with assumption, that classification is being performed at random, with probiability proportional to the inverse of the distance to the perfect shape.
dist(object, perfect_shape1) = d_1
dist(object, perfect_shape2) = d_2
dist(object, perfect_shape3) = d_3
...
inv( d_i )
conf(object, class_i) = -------------------
sum_j inv( d_j )
where
inv( d_i ) = max( d_j ) - d_i
Conclusions
First two ideas can be also incorporated into the third one to make use of knowledge of all the classes. In your particular example, the third approach should result in confidence of around 0.5 for both rectangle and circle, while in the first example it would be something closer to 0.01 (depending on how many so small objects would you have in the "training" set), which shows the difference - first two approaches show your confidence in classifing as a particular shape itself, while the third one shows relative confidence (so it can be low iff it is high for some other class, while the first two can simply answer "no classification is confident")
Building slightly on what lejlot has put forward; my preference would be to use the Mahalanobis distance with some squashing function. The Mahalanobis distance M(V, p) allows you to measure the distance between a distribution V and a point p.
In your case, I would use "perfect" examples of each class to generate the distribution V and p is the classification you want the confidence of. You can then use something along the lines of the following to be your confidence interval.
1-tanh( M(V, p) )

How to scale input DBSCAN in scikit-learn

Should the input to sklearn.clustering.DBSCAN be pre-processeed?
In the example http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#example-cluster-plot-dbscan-py the distances between the input samples X are calculated and normalized:
D = distance.squareform(distance.pdist(X))
S = 1 - (D / np.max(D))
db = DBSCAN(eps=0.95, min_samples=10).fit(S)
In another example for v0.14 (http://jaquesgrobler.github.io/online-sklearn-build/auto_examples/cluster/plot_dbscan.html) some scaling is done:
X = StandardScaler().fit_transform(X)
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
I base my code on the latter example and have the impression clustering works better with this scaling. However, this scaling "Standardizes features by removing the mean and scaling to unit variance". I try to find 2d clusters. If I have my clusters distributed in a squared area - let's say 100x100 I see no problem in the scaling. However, if the are distributed in an rectangled area e.g. 800x200 the scaling 'squeezes' my samples and changes the relative distances between them in one dimension. This deteriorates the clustering, doesn't it? Or am I understanding sth. wrong?
Do I need to apply some preprocessing at all, or can I simply input my 'raw' data?
It depends on what you are trying to do.
If you run DBSCAN on geographic data, and distances are in meters, you probably don't want to normalize anything, but set your epsilon threshold in meters, too.
And yes, in particular a non-uniform scaling does distort distances. While a non-distorting scaling is equivalent to just using a different epsilon value!
Note that in the first example, apparently a similarity and not a distance matrix is processed. S = (1 - D / np.max(D)) is a heuristic to convert a similarity matrix into a dissimilarity matrix. Epsilon 0.95 then effectively means at most "0.05 of the maximum dissimilarity observed". An alternate version that should yield the same result is:
D = distance.squareform(distance.pdist(X))
S = np.max(D) - D
db = DBSCAN(eps=0.95 * np.max(D), min_samples=10).fit(S)
Whereas in the second example, fit(X) actually processes the raw input data, and not a distance matrix. IMHO that is an ugly hack, to overload the method this way. It's convenient, but it leads to misunderstandings and maybe even incorrect usage sometimes.
Overall, I would not take sklearn's DBSCAN as a referene. The whole API seems to be heavily driven by classification, not by clustering. Usually, you don't fit a clustering, you do that for supervised methods only. Plus, sklearn currently does not use indexes for acceleration, and needs O(n^2) memory (which DBSCAN usually would not).
In general, you need to make sure that your distance works. If your distance function doesn't work no distance-based algorithm will produce the desired results. On some data sets, naive distances such as Euclidean work better when you first normalize your data. On other data sets, you have a good understanding on what distance is (e.g. geographic data. Doing a standardization on this obivously does not make sense, nor does Euclidean distance!)

Calculating the distance between each pair of a set of points

So I'm working on simulating a large number of n-dimensional particles, and I need to know the distance between every pair of points. Allowing for some error, and given the distance isn't relevant at all if exceeds some threshold, are there any good ways to accomplish this? I'm pretty sure if I want dist(A,C) and already know dist(A,B) and dist(B,C) I can bound it by [dist(A,B)-dist(B,C) , dist(A,B)+dist(B,C)], and then store the results in a sorted array, but I'd like to not reinvent the wheel if there's something better.
I don't think the number of dimensions should greatly affect the logic, but maybe for some solutions it will. Thanks in advance.
If the problem was simply about calculating the distances between all pairs, then it would be a O(n^2) problem without any chance for a better solution. However, you are saying that if the distance is greater than some threshold D, then you are not interested in it. This opens the opportunities for a better algorithm.
For example, in 2D case you can use the sweep-line technique. Sort your points lexicographically, first by y then by x. Then sweep the plane with a stripe of width D, bottom to top. As that stripe moves across the plane new points will enter the stripe through its top edge and exit it through its bottom edge. Active points (i.e. points currently inside the stripe) should be kept in some incrementally modifiable linear data structure sorted by their x coordinate.
Now, every time a new point enters the stripe, you have to check the currently active points to the left and to the right no farther than D (measured along the x axis). That's all.
The purpose of this algorithm (as it is typically the case with sweep-line approach) is to push the practical complexity away from O(n^2) and towards O(m), where m is the number of interactions we are actually interested in. Of course, the worst case performance will be O(n^2).
The above applies to 2-dimensional case. For n-dimensional case I'd say you'll be better off with a different technique. Some sort of space partitioning should work well here, i.e. to exploit the fact that if the distance between partitions is known to be greater than D, then there's no reason to consider the specific points in these partitions against each other.
If the distance beyond a certain threshold is not relevant, and this threshold is not too large, there are common techniques to make this more efficient: limit the search for neighbouring points using space-partitioning data structures. Possible options are:
Binning.
Trees: quadtrees(2d), kd-trees.
Binning with spatial hashing.
Also, since the distance from point A to point B is the same as distance from point B to point A, this distance should only be computed once. Thus, you should use the following loop:
for point i from 0 to n-1:
for point j from i+1 to n:
distance(point i, point j)
Combining these two techniques is very common for n-body simulation for example, where you have particles affect each other if they are close enough. Here are some fun examples of that in 2d: http://forum.openframeworks.cc/index.php?topic=2860.0
Here's a explanation of binning (and hashing): http://www.cs.cornell.edu/~bindel/class/cs5220-f11/notes/spatial.pdf

Resources