why immutable programming is preferred than mutable? [closed] - multithreading

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 5 years ago.
Improve this question
what i am getting from all the available article about this topic is,
The main advantage of immutable objects is to make the concurrent programming.
so if any application uses so many threads then we can use immutability.
here my question is: if application don't require multiple threads, still the immutable programming is preferred? because creating a new copy of the object for every single change can be very costly. (if yes why)

Consider this:
class Time(t: Double) {
private var time = t // Danger: mutable field
def getTime = time
def setTime(t: Double): Unit = time = t
}
val startAt = new Time(5.0)
val someOtherTime = startAt
someOtherTime.setTime(10.0)
// What does startAt.getTime return?
In this simple example, you might (or might not) be surprised to learn that, after someOtherTime.setTime(10.0) returns, startAt.getTime will have the value 10.0 instead of 5.0. Did you expect that, particularly given that startAt is a val?
Given that you've seen the code, maybe that was to be expected. However, if you just used Time without looking at its internals, I'm guessing that you'd be very surprised by that behavior. The state of mutable objects can change without you being aware of the change - particularly in a multi-threaded environment, where access to Time.time must be synchronized - but even the single-threaded case can introduce unexpected complexity.
Keeping objects immutable makes them simple to reason about. When those objects represent value types, immutability is practically essential. (Name a single value type in any major programming language or library that is not immutable.)
One further point about single-threaded vs. multi-threaded coding: if you're writing a single-threaded application, you might be tempted to ignore thread safety as an issue altogether. However, I think that's a little short-sighted in the general case. All new processors have multiple cores, and indications are that processors are going to get more and more cores in the coming years. If you want to write responsive, high-performance code, you're going to need to write multi-threaded applications, using thread-safe libraries.
If you're writing code that is not thread safe, and if it contains a lot of mutable objects exhibiting shared mutable state, then you're going to have to do a huge amount of refactoring to make it suitable for use in multi-threaded applications. On the other hand, if your objects are immutable, and have no shared mutable state, then that job is going to be a whole lot easier.
Incidentally, it is perfectly possible to use mutable state in a function, class, etc. provided that the mutable state is not shared (i.e. visible externally). That way you can have the benefits of the performance of mutable state, without the drawbacks.

I totally agree that immutable objects are simpler to reason about, even in single threaded programs. However sometimes it's more practical to work with mutable data, for example if performance is crucial (our computers are optimized for mutating operations) or the library you're using is inherently stateful.
I would also add that Scala is not the best language for writing pure functional programs. Languages like Haskell, PureScript, Idris etc. are better suited for the task IMHO. For some multi-threaded programs it's definitely worth the extra hassle to write Scala programs in a purely functional way though.

Related

Do we still need mutex if everything is immutable?

I noticed there is a Mutex structure in Haskell. I did not understand how it works as I am not a Haskell developer, but If every variable is immutable (as FP is advocating), why do we still need a mutex?
Indeed, all variables are immutable. But they can represent, for example, references to objects and there is a class of functions that allow you to describe the process of changing the contents of these references. If a similar process is in another thread, then there will be a problem.
You can say that Haskell is a language for modeling. And it's clean. But it allows you to model not pure calculations, but actual work on impure calculations makes runtime (or by FFI). And we need to design something like a mutex into our model for multithreaded programming.
ADDITION
I think, if you really want to understand why there is something like mutex in Haskell, first of all, you should understand how Haskell can have a function, for example, like readFile which takes a file path and returns its content? Problem is that readFile must be pure and impure, which is paradoxical. So, how in Haskell this paradox solved? Try to answer on this question and I believe you will understand more things by this way.
I'm not too sure where you're finding a structure called Mutex, but if you're talking about Data.Mutex, that's for the Fay language, which is a javascript-targetting language.
If you're talking about Control.Concurrent.Lock, that's what freestyle said which is that it's modelling a locking mechanism.
The more usual way of doing inter-process concurrency, though, uses what's called Software Transactional Memory and this uses the Control.Monad.STM module which uses a form of transactional memory that has a kind of automatic locking mechanism where most of the time you don't have to worry about manual locking. This is comparatively amazing when you consider manual locking.
Rich Hickey has been responsible for pushing this idea further into the mainstream by making an implementation of it in the Clojure language, but essentially this mechanism allows the application level programmer to not worry about the extreme pain of manual locking and synchronisation mechanisms. Reads are extremely fast because of immutability and writes get replayed automatically. Simon Peyton Jones has a paper on it and here's a link to a video of him talking about it at an o'reilly conference called "Transactional Memory for Concurrent Programming": https://www.youtube.com/watch?v=4caDLTfSa2Q

Future Protections in Managed Languages and Runtimes

In the future, will managed runtimes provide additional protections against subtle data corruption issues?
Managed runtimes such as Java and the .NET CLR reduce or eliminate the possibility of many memory corruption bugs common in native languages like C#. Nonetheless, they are surprisingly not immune from all memory corruption problems. One intuitively expects that a method that validates its input, has no bugs, and robustly handles exceptions will always transform its object from one valid state to another, but this is not the case. (It is more accurate to say that it is not the case using prevailing programming conventions--object implementors need to go out of their way to avoid the problems I describe.)
Consider the following scenarios:
Threading. The caller might share the object with other threads and make concurrent calls on it. If the object does not implement locking, the fields might be corrupted. (Perhaps--unless notified that the object is thread-safe--runtimes should use an interlock on every method call to throw an exception if any method on the same object executing concurrently on another thread. This would be a protection feature and, just like other well-accepted safety features of managed runtimes, it has some cost.)
Re-entrancy. The method makes a callout to an arbitrary function (such as an event handler) that ultimately calls methods on the object that are not designed to be called at that point. This is even trickier than thread safety and many class libraries do not get this right. (Worse yet, class libraries are known to poorly document what re-entrancy is allowed.)
For all of these cases, it can be argued that thorough documentation is a solution. However, documentation also can prescribe how to allocate and deallocate memory in unmanaged languages. We know from experience (e.g., with memory allocation) that the difference between documentation and language/runtime enforcement is night and day.
What can we expect from languages and runtimes in the future to protect us from these problems and other subtle problems like them?
I think languages and runtimes will keep moving forward, keep abstracting away issues from the developer, and keep making our lives easier and more productive.
Take your example - threading. There are some great new features on the horizon in the .NET world to simplify the threading model we use daily. STM.NET may eventually make shared state much, much safer to handle, for example. The parallel extensions in .NET 4 make life very easy for threading compared to current technologies.
I think that transactional memory is promising for addressing some of these issues. I'm not sure if this answers your question in some way but this is an interesting topic in any event:
http://en.wikipedia.org/wiki/Software_transactional_memory
There was an episode of Software Engineering Radio on the topic a year or so ago maybe.
First of all, "managed" is a bit of a misnomer: languages like OCaml, Haskell, and SML achieve such protections and safety while being fully compiled. All relevant "management" occurs at compile time through static analysis, which aids optimization and speed.
Anyway, to answer your question: if you look at languages like Erlang and Haskell, state is isolated and immutable by default. With kind of system, threading and reentrancy is safe by default, and because you have to go out of your way to break these rules, it is obvious to see where unsafe code can arise.
By starting with safe defaults but leaving room for advanced unsafe usage, you get the best of both worlds. It seems reasonable that future systems that are safe by your definition may follow some of these practices as well.
What can we expect in the future?
Nothing. Thread-state and re-entrancy are not problems I see tools/runtimes solving. Instead I think in the future people will move to styles that avoid programming with mutable state to bypass these issues. Languages and libraries can help make these styles of programming more attractive, but the tools are not the solution - changing the way we write code is the solution.

Threading Best Practices

Many projects I work on have poor threading implementations and I am the sucker who has to track these down. Is there an accepted best way to handle threading. My code is always waiting for an event that never fires.
I'm kinda thinking like a design pattern or something.
(Assuming .NET; similar things would apply for other platforms.)
Well, there are lots of things to consider. I'd advise:
Immutability is great for multi-threading. Functional programming works well concurrently partly due to the emphasis on immutability.
Use locks when you access mutable shared data, both for reads and writes.
Don't try to go lock-free unless you really have to. Locks are expensive, but rarely the bottleneck.
Monitor.Wait should almost always be part of a condition loop, waiting for a condition to become true and waiting again if it's not.
Try to avoid holding locks for longer than you need to.
If you ever need to acquire two locks at once, document the ordering thoroughly and make sure you always use the same order.
Document the thread-safety of your types. Most types don't need to be thread-safe, they just need to not be thread hostile (i.e. "you can use them from multiple threads, but it's your responsibility to take out locks if you want to share them)
Don't access the UI (except in documented thread-safe ways) from a non-UI thread. In Windows Forms, use Control.Invoke/BeginInvoke
That's off the top of my head - I probably think of more if this is useful to you, but I'll stop there in case it's not.
Learning to write multi-threaded programs correctly is extremely difficult and time consuming.
So the first step is: replace the implementation with one that doesn't use multiple threads at all.
Then carefully put threading back in if, and only if, you discover a genuine need for it, when you've figured out some very simple safe ways to do so. A non-threaded implementation that works reliably is far better than a broken threaded implementation.
When you're ready to start, favour designs that use thread-safe queues to transfer work items between threads and take care to ensure that those work items are accessed only by one thread at a time.
Try to avoid just spraying lock blocks around your code in the hope that it will become thread-safe. It doesn't work. Eventually, two code paths will acquire the same locks in a different order, and everything will grind to a halt (once every two weeks, on a customer's server). This is especially likely if you combine threads with firing events, and you hold the lock while you fire the event - the handler may take out another lock, and now you have a pair of locks held in a particular order. What if they're taken out in the opposite order in some other situation?
In short, this is such a big and difficult subject that I think it is potentially misleading to give a few pointers in a short answer and say "Off you go!" - I'm sure that's not the intention of the many learned people giving answers here, but that is the impression many get from summarised advice.
Instead, buy this book.
Here is a very nicely worded summary from this site:
Multithreading also comes with
disadvantages. The biggest is that it
can lead to vastly more complex
programs. Having multiple threads does
not in itself create complexity; it's
the interaction between the threads
that creates complexity. This applies
whether or not the interaction is
intentional, and can result long
development cycles, as well as an
ongoing susceptibility to intermittent
and non-reproducable bugs. For this
reason, it pays to keep such
interaction in a multi-threaded design
simple – or not use multithreading at
all – unless you have a peculiar
penchant for re-writing and debugging!
Perfect summary from Stroustrup:
The traditional way of dealing with concurrency by letting a bunch of
threads loose in a single address space and then using locks to try to
cope with the resulting data races and coordination problems is
probably the worst possible in terms of correctness and
comprehensibility.
(Like Jon Skeet, much of this assumes .NET)
At the risk of seeming argumentative, comments like these just bother me:
Learning to write multi-threaded
programs correctly is extremely
difficult and time consuming.
Threads should be avoided when
possible...
It is practically impossible to write software that does anything significant without leveraging threads in some capacity. If you are on Windows, open your Task Manager, enable the Thread Count column, and you can probably count on one hand the number of processes that are using a single thread. Yes, one should not simply use threads for the sake of using threads nor should it be done cavalierly, but frankly, I believe these cliches are used too often.
If I had to boil multithreaded programming down for the true novice, I would say this:
Before jumping into it, first understand that the the class boundary is not the same as a thread boundary. For example, if a callback method on your class is called by another thread (e.g., the AsyncCallback delegate to the TcpListener.BeginAcceptTcpClient() method), understand that the callback executes on that other thread. So even though the callback occurs on the same object, you still have to synchronize access to the members of the object within the callback method. Threads and classes are orthogonal; it is important to understand this point.
Identify what data needs to be shared between threads. Once you have defined the shared data, try to consolidate it into a single class if possible.
Limit the places where the shared data can be written and read. If you can get this down to one place for writing and one place for reading, you will be doing yourself a tremendous favor. This is not always possible, but it is a nice goal to shoot for.
Obviously make sure you synchronize access to the shared data using the Monitor class or the lock keyword.
If possible, use a single object to synchronize your shared data regardless of how many different shared fields there are. This will simplify things. However, it may also overly constrain things too, in which case, you may need a synchronization object for each shared field. And at this point, using immutable classes becomes very handy.
If you have one thread that needs to signal another thread(s), I would strongly recommend using the ManualResetEvent class to do this instead of using events/delegates.
To sum up, I would say that threading is not difficult, but it can be tedious. Still, a properly threaded application will be more responsive, and your users will be most appreciative.
EDIT:
There is nothing "extremely difficult" about ThreadPool.QueueUserWorkItem(), asynchronous delegates, the various BeginXXX/EndXXX method pairs, etc. in C#. If anything, these techniques make it much easier to accomplish various tasks in a threaded fashion. If you have a GUI application that does any heavy database, socket, or I/O interaction, it is practically impossible to make the front-end responsive to the user without leveraging threads behind the scenes. The techniques I mentioned above make this possible and are a breeze to use. It is important to understand the pitfalls, to be sure. I simply believe we do programmers, especially younger ones, a disservice when we talk about how "extremely difficult" multithreaded programming is or how threads "should be avoided." Comments like these oversimplify the problem and exaggerate the myth when the truth is that threading has never been easier. There are legitimate reasons to use threads, and cliches like this just seem counterproductive to me.
You may be interested in something like CSP, or one of the other theoretical algebras for dealing with concurrency. There are CSP libraries for most languages, but if the language wasn't designed for it, it requires a bit of discipline to use correctly. But ultimately, every kind of concurrency/threading boils down to some fairly simple basics: Avoid shared mutable data, and understand exactly when and why each thread may have to block while waiting for another thread. (In CSP, shared data simply doesn't exist. Each thread (or process in CSP terminology) is only allowed to communicate with others through blocking message-passing channels. Since there is no shared data, race conditions go away. Since message passing is blocking, it becomes easy to reason about synchronization, and literally prove that no deadlocks can occur.)
Another good practice, which is easier to retrofit into existing code is to assign a priority or level to every lock in your system, and make sure that the following rules are followed consistently:
While holding a lock at level N, you
may only acquire new locks of lower levels
Multiple locks at the same level must
be acquired at the same time, as a
single operation, which always tries
to acquire all the requested locks in
the same global order (Note that any
consistent order will do, but any
thread that tries to acquire one or
more locks at level N, must do
acquire them in the same order as any
other thread would do anywhere else
in the code.)
Following these rules mean that it is simply impossible for a deadlock to occur. Then you just have to worry about mutable shared data.
BIG emphasis on the first point that Jon posted. The more immutable state that you have (ie: globals that are const, etc...), the easier your life is going to be (ie: the fewer locks you'll have to deal with, the less reasoning you'll have to do about interleaving order, etc...)
Also, often times if you have small objects to which you need multiple threads to have access, you're sometimes better off copying it between threads rather than having a shared, mutable global that you have to hold a lock to read/mutate. It's a tradeoff between your sanity and memory efficiency.
Looking for a design pattern when dealing with threads is the really best approach to start with. It's too bad that many people don't try it, instead attempting to implement less or more complex multithreaded constructs on their own.
I would probably agree with all opinions posted so far. In addition, I'd recommend to use some existing more coarse-grained frameworks, providing building blocks rather than simple facilities like locks, or wait/notify operations. For Java, it would be simply the built-in java.util.concurrent package, which gives you ready-to-use classes you can easily combine to achieve a multithreaded app. The big advantage of this is that you avoid writing low-level operations, which results in hard-to-read and error-prone code, in favor of a much clearer solution.
From my experience, it seems that most concurrency problems can be solved in Java by using this package. But, of course, you always should be careful with multithreading, it's challenging anyway.
Adding to the points that other folks have already made here:
Some developers seem to think that "almost enough" locking is good enough. It's been my experience that the opposite can be true -- "almost enough" locking can be worse than enough locking.
Imagine thread A locking resource R, using it, and then unlocking it. A then uses resource R' without a lock.
Meanwhile, thread B tries to access R while A has it locked. Thread B is blocked until thread A unlocks R. Then the CPU context switches to thread B, which accesses R, and then updates R' during its time slice. That update renders R' inconsistent with R, causing a failure when A tries to access it.
Test on as many different hardware and OS architectures as possible. Different CPU types, different numbers of cores and chips, Windows/Linux/Unix, etc.
The first developer who worked with multi-threaded programs was a guy named Murphy.
Well, everyone thus far has been Windows / .NET centric, so I'll chime in with some Linux / C.
Avoid futexes at all costs(PDF), unless you really, really need to recover some of the time spent with mutex locks. I am currently pulling my hair out with Linux futexes.
I don't yet have the nerve to go with practical lock free solutions, but I'm rapidly approaching that point out of pure frustration. If I could find a good, well documented and portable implementation of the above that I could really study and grasp, I'd probably ditch threads completely.
I have come across so much code lately that uses threads which really should not, its obvious that someone just wanted to profess their undying love of POSIX threads when a single (yes, just one) fork would have done the job.
I wish that I could give you some code that 'just works', 'all the time'. I could, but it would be so silly to serve as a demonstration (servers and such that start threads for each connection). In more complex event driven applications, I have yet (after some years) to write anything that doesn't suffer from mysterious concurrency issues that are nearly impossible to reproduce. So I'm the first to admit, in that kind of application, threads are just a little too much rope for me. They are so tempting and I always end up hanging myself.
I'd like to follow up with Jon Skeet's advice with a couple more tips:
If you are writing a "server", and are likely to have a high amount of insert parallelism, don't use Microsoft's SQL Compact. Its lock manager is stupid. If you do use SQL Compact, DON'T use serializable transactions (which happens to be the default for the TransactionScope class). Things will fall apart on you rapidly. SQL Compact doesn't support temporary tables, and when you try to simulate them inside of serialized transactions it does rediculsouly stupid things like take x-locks on the index pages of the _sysobjects table. Also it get's really eager about lock promotion, even if you don't use temp tables. If you need serial access to multiple tables , your best bet is to use repeatable read transactions(to give atomicity and integrity) and then implement you own hierarchal lock manager based on domain-objects (accounts, customers, transactions, etc), rather than using the database's page-row-table based scheme.
When you do this, however, you need to be careful (like John Skeet said) to create a well defined lock hierarchy.
If you do create your own lock manager, use <ThreadStatic> fields to store information about the locks you take, and then add asserts every where inside the lock manager that enforce your lock hierarchy rules. This will help to root out potential issues up front.
In any code that runs in a UI thread, add asserts on !InvokeRequired (for winforms), or Dispatcher.CheckAccess() (for WPF). You should similarly add the inverse assert to code that runs in background threads. That way, people looking at a method will know, just by looking at it, what it's threading requirements are. The asserts will also help to catch bugs.
Assert like crazy, even in retail builds. (that means throwing, but you can make your throws look like asserts). A crash dump with an exception that says "you violated threading rules by doing this", along with stack traces, is much easier to debug then a report from a customer on the other side of the world that says "every now and then the app just freezes on me, or it spits out gobbly gook".
It's the mutable state, stupid
That is a direct quote from Java Concurrency in Practice by Brian Goetz. Even though the book is Java-centric, the "Summary of Part I" gives some other helpful hints that will apply in many threaded programming contexts. Here are a few more from that same summary:
Immutable objects are automatically thread-safe.
Guard each mutable variable with a lock.
A program that accesses a mutable variable from multiple threads without
synchronization is a broken program.
I would recommend getting a copy of the book for an in-depth treatment of this difficult topic.
(source: umd.edu)
Instead of locking on containers, you should use ReaderWriterLockSlim. This gives you database like locking - an infinite number of readers, one writer, and the possibility of upgrading.
As for design patterns, pub/sub is pretty well established, and very easy to write in .NET (using the readerwriterlockslim). In our code, we have a MessageDispatcher object that everyone gets. You subscribe to it, or you send a message out in a completely asynchronous manner. All you have to lock on is the registered functions and any resources that they work on. It makes multithreading much easier.

Achieving Thread-Safety

Question How can I make sure my application is thread-safe? Are their any common practices, testing methods, things to avoid, things to look for?
Background I'm currently developing a server application that performs a number of background tasks in different threads and communicates with clients using Indy (using another bunch of automatically generated threads for the communication). Since the application should be highly availabe, a program crash is a very bad thing and I want to make sure that the application is thread-safe. No matter what, from time to time I discover a piece of code that throws an exception that never occured before and in most cases I realize that it is some kind of synchronization bug, where I forgot to synchronize my objects properly. Hence my question concerning best practices, testing of thread-safety and things like that.
mghie: Thanks for the answer! I should perhaps be a little bit more precise. Just to be clear, I know about the principles of multithreading, I use synchronization (monitors) throughout my program and I know how to differentiate threading problems from other implementation problems. But nevertheless, I keep forgetting to add proper synchronization from time to time. Just to give an example, I used the RTL sort function in my code. Looked something like
FKeyList.Sort (CompareKeysFunc);
Turns out, that I had to synchronize FKeyList while sorting. It just don't came to my mind when initially writing that simple line of code. It's these thins I wanna talk about. What are the places where one easily forgets to add synchronization code? How do YOU make sure that you added sync code in all important places?
You can't really test for thread-safeness. All you can do is show that your code isn't thread-safe, but if you know how to do that you already know what to do in your program to fix that particular bug. It's the bugs you don't know that are the problem, and how would you write tests for those? Apart from that threading problems are much harder to find than other problems, as the act of debugging can already alter the behaviour of the program. Things will differ from one program run to the next, from one machine to the other. Number of CPUs and CPU cores, number and kind of programs running in parallel, exact order and timing of stuff happening in the program - all of this and much more will have influence on the program behaviour. [I actually wanted to add the phase of the moon and stuff like that to this list, but you get my meaning.]
My advice is to stop seeing this as an implementation problem, and start to look at this as a program design problem. You need to learn and read all that you can find about multi-threading, whether it is written for Delphi or not. In the end you need to understand the underlying principles and apply them properly in your programming. Primitives like critical sections, mutexes, conditions and threads are something the OS provides, and most languages only wrap them in their libraries (this ignores things like green threads as provided by for example Erlang, but it's a good point of view to start out from).
I'd say start with the Wikipedia article on threads and work your way through the linked articles. I have started with the book "Win32 Multithreaded Programming" by Aaron Cohen and Mike Woodring - it is out of print, but maybe you can find something similar.
Edit: Let me briefly follow up on your edited question. All access to data that is not read-only needs to be properly synchronized to be thread-safe, and sorting a list is not a read-only operation. So obviously one would need to add synchronization around all accesses to the list.
But with more and more cores in a system constant locking will limit the amount of work that can be done, so it is a good idea to look for a different way to design your program. One idea is to introduce as much read-only data as possible into your program - locking is no longer necessary, as all access is read-only.
I have found interfaces to be a very valuable aid in designing multi-threaded programs. Interfaces can be implemented to have only methods for read-only access to the internal data, and if you stick to them you can be quite sure that a lot of the potential programming errors do not occur. You can freely share them between threads, and the thread-safe reference counting will make sure that the implementing objects are properly freed when the last reference to them goes out of scope or is assigned another value.
What you do is create objects that descend from TInterfacedObject. They implement one or more interfaces which all provide only read-only access to the internals of the object, but they can also provide public methods that mutate the object state. When you create the object you keep both a variable of the object type and a interface pointer variable. That way lifetime management is easy, because the object will be deleted automatically when an exception occurs. You use the variable pointing to the object to call all methods necessary to properly set up the object. This mutates the internal state, but since this happens only in the active thread there is no potential for conflict. Once the object is properly set up you return the interface pointer to the calling code, and since there is no way to access the object afterwards except by going through the interface pointer you can be sure that only read-only access can be performed. By using this technique you can completely remove the locking inside of the object.
What if you need to change the state of the object? You don't, you create a new one by copying the data from the interface, and mutate the internal state of the new objects afterwards. Finally you return the reference pointer to the new object.
By using this you will only need locking where you get or set such interfaces. It can even be done without locking, by using the atomic interchange functions. See this blog post by Primoz Gabrijelcic for a similar use case where an interface pointer is set.
Simple: don't use shared data. Every time you access shared data you risk running into a problem (if you forget to synchronize access). Even worse, each time you access shared data you risk blocking other threads which will hurt your paralelization.
I know this advice is not always applicable. Still, it doesn't hurt if you try to follow it as much as possible.
EDIT: Longer response to Smasher's comment. Would not fit in a comment :(
You are totally correct. That's why I like to keep a shadow copy of the main data in a readonly thread. I add a versioning to the structure (one 4-aligned DWORD) and increment this version in the (lock-protected) data writer. Data reader would compare global and private version (which can be done without locking) and only if they differr it would lock the structure, duplicate it to a local storage, update the local version and unlock. Then it would access the local copy of the structure. Works great if reading is the primary way to access the structure.
I'll second mghie's advice: thread safety is designed in. Read about it anywhere you can.
For a really low level look at how it is implemented, look for a book on the internals of a real time operating system kernel. A good example is MicroC/OS-II: The Real Time Kernel by Jean J. Labrosse, which contains the complete annotated source code to a working kernel along with discussions of why things are done the way they are.
Edit: In light of the improved question focusing on using a RTL function...
Any object that can be seen by more than one thread is a potential synchronization issue. A thread-safe object would follow a consistent pattern in every method's implementation of locking "enough" of the object's state for the duration of the method, or perhaps, narrowed to just "long enough". It is certainly the case that any read-modify-write sequence to any part of an object's state must be done atomically with respect to other threads.
The art lies in figuring out how to get useful work done without either deadlocking or creating an execution bottleneck.
As for finding such problems, testing won't be any guarantee. A problem that shows up in testing can be fixed. But it is extremely difficult to write either unit tests or regression tests for thread safety... so faced with a body of existing code your likely recourse is constant code review until the practice of thread safety becomes second nature.
As folks have mentioned and I think you know, being certain, in general, that your code is thread safe is impossible (I believe provably impossible but I would have to track down the theorem). Naturally, you want to make things easier than that.
What I try to do is:
Use a known pattern of multithreaded design: A thread pool, the actor model paradigm, the command pattern or some such approach. This way, the syncronization process happens in the same way, in a uniform way, throughout the application.
Limit and concentrate the points of synchronization. Write your code so you need synchronization in as few places as possible and the keep the synchronization code in one or few places in the code.
Write the synchronization code so that the logical relation between the values is clear on both on entering and on exiting the guard. I use lots of asserts for this (your environment may limit this).
Don't ever access shared variables without guards/synchronization. Be very clear what your shared data is. (I've heard there are paradigms for guardless multithreaded programming but that would require even more research).
Write your code as cleanly, clearly and DRY-ly as possible.
My simple answer combined with those answer is:
Create your application/program using
thread safety manner
Avoid using public static variable in
all places
Therefore it usually fall into this habit/practice easily but it needs some time to get used to:
program your logic (not the UI) in functional programming language such as F# or even using Scheme or Haskell. Also functional programming promotes thread safety practice while it also warns us to always code towards purity in functional programming.
If you use F#, there's also clear distinction about using mutable or immutable objects such as variables.
Since method (or simply functions) is a first class citizen in F# and Haskell, then the code you write will also have more disciplined toward less mutable state.
Also using the lazy evaluation style that usually can be found in these functional languages, you can be sure that your program is safe fromside effects, and you'll also realize that if your code needs effects, you have to clearly define it. IF side effects are taken into considerations, then your code will be ready to take advantage of composability within components in your codes and the multicore programming.

How to implement closures without gc?

I'm designing a language. First, I want to decide what code to generate. The language will have lexical closures and prototype based inheritance similar to javascript. But I'm not a fan of gc and try to avoid as much as possible. So the question: Is there an elegant way to implement closures without resorting to allocate the stack frame on the heap and leave it to garbage collector?
My first thoughts:
Use reference counting and garbage collect the cycles (I don't really like this)
Use spaghetti stack (looks very inefficient)
Limit forming of closures to some contexts such a way that, I can get away with a return address stack and a locals' stack.
I won't use a high level language or follow any call conventions, so I can smash the stack as much as I like.
(Edit: I know reference counting is a form of garbage collection but I am using gc in its more common meaning)
This would be a better question if you can explain what you're trying to avoid by not using GC. As I'm sure you're aware, most languages that provide lexical closures allocate them on the heap and allow them to retain references to variable bindings in the activation record that created them.
The only alternative to that approach that I'm aware of is what gcc uses for nested functions: create a trampoline for the function and allocate it on the stack. But as the gcc manual says:
If you try to call the nested function through its address after the containing function has exited, all hell will break loose. If you try to call it after a containing scope level has exited, and if it refers to some of the variables that are no longer in scope, you may be lucky, but it's not wise to take the risk. If, however, the nested function does not refer to anything that has gone out of scope, you should be safe.
Short version is, you have three main choices:
allocate closures on the stack, and don't allow their use after their containing function exits.
allocate closures on the heap, and use garbage collection of some kind.
do original research, maybe starting from the region stuff that ML, Cyclone, etc. have.
This thread might help, although some of the answers here reflect answers there already.
One poster makes a good point:
It seems that you want garbage collection for closures
"in the absence of true garbage collection". Note that
closures can be used to implement cons cells. So your question
seem to be about garbage collection "in the absence of true
garbage collection" -- there is rich related literature.
Restricting problem to closures does not really change it.
So the answer is: no, there is no elegant way to have closures and no real GC.
The best you can do is some hacking to restrict your closures to a particular type of closure. All this is needless if you have a proper GC.
So, my question reflects some of the other ones here - why do you not want to implement GC? A simple mark+sweep or stop+copy takes about 2-300 lines of (Scheme) code, and isn't really that bad in terms of programming effort. In terms of making your programs slower:
You can implement a more complex GC which has better performance.
Just think of all the memory leaks programs in your language won't suffer from.
Coding with a GC available is a blessing. (Think C#, Java, Python, Perl, etc... vs. C++ or C).
I understand that I'm very late, but I stumbled upon this question by accident.
I believe that full support of closures indeed requires GC, but in some special cases stack allocation is safe. Determining these special cases requires some escape analysis. I suggest that you take a look at the BitC language papers, such as Closure Implementation in BitC. (Although I doubt whether the papers reflect the current plans.) The designers of BitC had the same problem you do. They decided to implement a special non-collecting mode for the compiler, which denies all closures that might escape. If turned on, it will restrict the language significantly. However, the feature is not implemented yet.
I'd advise you to use a collector - it's the most elegant way. You should also consider that a well-built garbage collector allocates memory faster than malloc does. The BitC folks really do value performance and they still think that GC is fine even for the most parts of their operating system, Coyotos. You can migitate the downsides by simple means:
create only a minimal amount of garbage
let the programmer control the collector
optimize stack/heap use by escape analysis
use an incremental or concurrent collector
if somehow possible, divide the heap like Erlang does
Many fear garbage collectors because of their experiences with Java. Java has a fantastic collector, but applications written in Java have performance problems because of the sheer amount of garbage generated. In addition, a bloated runtime and fancy JIT compilation is not really a good idea for desktop applications because of the longer startup and response times.
The C++ 0x spec defines lambdas without garbage collection. In short, the spec allows non-deterministic behavior in cases where the lambda closure contains references which are no longer valid. For example (pseudo-syntax):
(int)=>int create_lambda(int a)
{
return { (int x) => x + a }
}
create_lambda(5)(4) // undefined result
The lambda in this example refers to a variable (a) which is allocated on the stack. However, that stack frame has been popped and is not necessarily available once the function returns. In this case, it would probably work and return 9 as a result (assuming sane compiler semantics), but there is no way to guarantee it.
If you are avoiding garbage collection, then I'm assuming that you also allow explicit heap vs. stack allocation and (probably) pointers. If that is the case, then you can do like C++ and just assume that developers using your language will be smart enough to spot the problem cases with lambdas and copy to the heap explicitly (just like you would if you were returning a value synthesized within a function).
Use reference counting and garbage collect the cycles (I don't really like this)
It's possible to design your language so there are no cycles: if you can only make new objects and not mutate old ones, and if making an object can't make a cycle, then cycles never appear. Erlang works essentially this way, though in practice it does use GC.
If you have the machinery for a precise copying GC, you could allocate on the stack initially and copy to the heap and update pointers if you discover at exit that a pointer to this stack frame has escaped. That way you only pay if you actually do capture a closure that includes this stack frame. Whether this helps or hurts depends on how often you use closures and how much they capture.
You might also look into C++0x's approach (N1968), though as one might expect from C++ it consists of counting on the programmer to specify what gets copied and what gets referenced, and if you get it wrong you just get invalid accesses.
Or just don't do GC at all. There can be situations where it's better to just forget the memory leak and let the process clean up after it when it's done.
Depending on your qualms about GC, you might be afraid of the periodic GC sweeps. In this case you could do a selective GC when an item falls out of scope or the pointer changes. I'm not sure how expensive this would be though.
#Allen
What good is a closure if you can't use them when the containing function exits? From what I understand that's the whole point of closures.
You could work with the assumption that all closures will be called eventually and exactly one time. Now, when the closure is called you can do the cleanup at the closure return.
How do you plan on dealing with returning objects? They have to be cleaned up at some point, which is the exact same problem with closures.
So the question: Is there an elegant way to implement closures without resorting to allocate the stack frame on the heap and leave it to garbage collector?
GC is the only solution for the general case.
Better late than never?
You might find this interesting: Differential Execution.
It's a little-known control stucture, and its primary use is in programming user interfaces, including ones that can change dynamically while in use. It is a significant alternative to the Model-View-Controller paradigm.
I mention it because one might think that such code would rely heavily on closures and garbage-collection, but a side effect of the control structure is that it eliminates both of those, at least in the UI code.
Create multiple stacks?
I've read that the last versions of ML use GC only sparingly
I guess if the process is very short, which means it cannot use much memory, then GC is unnecessary. The situation is analogous to worrying about stack overflow. Don't nest too deeply, and you cannot overflow; don't run too long, and you cannot need the GC. Cleaning up becomes a matter of simply reclaiming the large region that you pre-allocated. Even a longer process can be divided into smaller processes that have their own heaps pre-allocated. This would work well with event handlers, for example. It does not work well, if you are writing compiler; in that case, a GC is surely not much of a handicap.

Resources