Limit CPU time of process group - linux

Is there a way to limit the absolute CPU time (in CPU seconds) spend in a process group?
ulimit -t 10; ./my-process looks like a good option but if my-process forks then each process in the process group gets its own limit. The whole process group can use an arbitrary amount of time by forking every 9 seconds.
The accepted answer on a similar question is to use cgroups but doesn't explain how. However, there are other answers (Limit total CPU usage with cgroups) saying that this is not possible in cgroups and only relative cpu usage can be limited (for example, 0.2 seconds out of every 1 second).
Liran Funaro suggested using a long period for cpu.cfs_period_us (https://stackoverflow.com/a/43660834/892961) but the parameter for the quota can be at most 1 second. So even with a long period I don't see how to set a CPU time limit of 10 seconds or an hour.
If ulimit and cgroups cannot do this, is there another way?

you can do it with cgroups. Do as root:
# Create cgroup
cgcreate -g cpu:/limited
# set shares (cpu limit)
cgset -r cpu.shares=256 limited
# run your program
cgexec -g cpu:limited /my/hungry/program
Alternatively you can use the cpulimit program which can freeze your code periodically. cgroups is the most advanced method though.
to set fixed cpu share :
cgcreate -g cpu:/fixedlimit
# allow fix 25% cpu usage (1 cpu)
cgset -r cpu.cfs_quota_us=25000,cpu.cfs_period_us=100000 fixedlimit
cgexec -g cpu:fixedlimit /my/hungry/program
It turned out, the goal is to limit runtime to certain seconds while measuring it. After setting the desired cgroup limits (in order to get a fair sandbox) you can achieve this goal by running:
((time -p timeout 20 cgexec -g cpu:fixedlimit /program/to/test ) 2>&1) | grep user
After 20 seconds the program will be stopped no matter what, and we can parse for user time (or system or real time) to evaluate it's performance.

This not directly answer the question but refers to the discussion on the actual need of the OP.
If your competition ignores everything except CPU time, it may be fundamentally flawed. One can simply, for example, cache results in the primary storage device. Since you do not count storage access time, it may have the least CPU cycles, but the worse actual performance.
A perfect crime would be to simply send the data via the Internet to another computer, which calculate the task then return the answer. This would finish the task with what appear to be zero cycles.
You actually want to measure "real" time and give this process the highest priority in your system (or actually running it secludedly).
When checking students' homework, we simply used an unrealistic time limit (e.g., 5 minutes for what should be a 10 seconds program), then killing the process if it has not finished in time and failing this submission.
If you want to pick a winner, then simply re-run the best competitors multiple times to ensure the validity of their results.

I found a solution that works for me. It is still far from perfect (read the caveats before using it). I'm somewhat new to bash scripting so any comments about this are welcome.
#!/bin/bash
#
# This script tries to limit the CPU time of a process group similar to
# ulimit but counting the time spent in spawned processes against the
# limit. It works by creating a temporary cgroup to run the process in
# and checking on the used CPU time of that process group. Instead of
# polling in regular intervals, the monitoring process assumes that no
# time is lost to I/O (i.e., wall clock time = CPU time) and checks in
# after the time limit. It then updates its assumption by comparing the
# actual CPU usage to the time limit and waiting again. This is repeated
# until the CPU usage exceeds its limit or the monitored process
# terminates. Once the main process terminates, all remaining processes
# in the temporary cgroup are killed.
#
# NOTE: this script still has some major limitations.
# 1) The monitored process can exceed the limit by up to one second
# since every iteration of the monitoring process takes at least that
# long. It can exceed the limit by an additional second by ignoring
# the SIGXCPU signal sent when hitting the (soft) limit but this is
# configurable below.
# 2) It assumes there is only one CPU core. On a system with n cores
# waiting for t seconds gives the process n*t seconds on the CPU.
# This could be fixed by figuring out how many CPUs the process is
# allowed to use (using the cpuset cgroup) and dividing the remaining
# time by that. Since sleep has a resolution of 1 second, this would
# still introduce an error of up to n seconds.
set -e
if [ "$#" -lt 2 ]; then
echo "Usage: $(basename "$0") TIME_LIMIT_IN_S COMMAND [ ARG ... ]"
exit 1
fi
TIME_LIMIT=$1
shift
# To simulate a hard time limit, set KILL_WAIT to 0. If KILL_WAIT is
# non-zero, TIME_LIMIT is the soft limit and TIME_LIMIT + KILL_WAIT is
# the hard limit.
KILL_WAIT=1
# Update as necessary. The script needs permissions to create cgroups
# in the cpuacct hierarchy in a subgroup "timelimit". To create it use:
# sudo cgcreate -a $USER -t $USER -g cpuacct:timelimit
CGROUPS_ROOT=/sys/fs/cgroup
LOCAL_CPUACCT_GROUP=timelimit/timelimited_$$
LOCAL_CGROUP_TASKS=$CGROUPS_ROOT/cpuacct/$LOCAL_CPUACCT_GROUP/tasks
kill_monitored_cgroup() {
SIGNAL=$1
kill -$SIGNAL $(cat $LOCAL_CGROUP_TASKS) 2> /dev/null
}
get_cpu_usage() {
cgget -nv -r cpuacct.usage $LOCAL_CPUACCT_GROUP
}
# Create a cgroup to measure the CPU time of the monitored process.
cgcreate -a $USER -t $USER -g cpuacct:$LOCAL_CPUACCT_GROUP
# Start the monitored process. In case it fails, we still have to clean
# up, so we disable exiting on errors.
set +e
(
set -e
# In case the process doesn't fork a ulimit is more exact. If the
# process forks, the ulimit still applies to each child process.
ulimit -t $(($TIME_LIMIT + $KILL_WAIT))
ulimit -S -t $TIME_LIMIT
cgexec -g cpuacct:$LOCAL_CPUACCT_GROUP --sticky $#
)&
MONITORED_PID=$!
# Start the monitoring process
(
REMAINING_TIME=$TIME_LIMIT
while [ "$REMAINING_TIME" -gt "0" ]; do
# Wait $REMAINING_TIME seconds for the monitored process to
# terminate. On a single CPU the CPU time cannot exceed the
# wall clock time. It might be less, though. In that case, we
# will go through the loop again.
sleep $REMAINING_TIME
CPU_USAGE=$(get_cpu_usage)
REMAINING_TIME=$(($TIME_LIMIT - $CPU_USAGE / 1000000000))
done
# Time limit exceeded. Kill the monitored cgroup.
if [ "$KILL_WAIT" -gt "0" ]; then
kill_monitored_cgroup XCPU
sleep $KILL_WAIT
fi
kill_monitored_cgroup KILL
)&
MONITOR_PID=$!
# Wait for the monitored job to exit (either on its own or because it
# was killed by the monitor).
wait $MONITORED_PID
EXIT_CODE=$?
# Kill all remaining tasks in the monitored cgroup and the monitor.
kill_monitored_cgroup KILL
kill -KILL $MONITOR_PID 2> /dev/null
wait $MONITOR_PID 2>/dev/null
# Report actual CPU usage.
set -e
CPU_USAGE=$(get_cpu_usage)
echo "Total CPU usage: $(($CPU_USAGE / 1000000))ms"
# Clean up and exit with the return code of the monitored process.
cgdelete cpuacct:$LOCAL_CPUACCT_GROUP
exit $EXIT_CODE

Related

Get average CPU Usage percentage of single process until I kill it in bash script

I have a bash script where I would like to get know how much percentage of CPU time a process uses until I kill it in the last line of the script.
I know that I could normally do this via the time -v command, however my process is Erlang/OTP based and by using the time command it only measures the startup process statistics.
Therefore I'd like to use the process PID I can get easily and use that one to get the CPU time percentage until the end of the script.
Currently I'm using pidstat but it is only giving me statistics for linear time intervals.
I want to measure the exact timeinterval from when the process started until it gets killed.
Peak RAM statistics woul also be nice.
Could you recommend me any command I could use in this case?
This is my bash script:
sudo emqx start
sleep 10
mypid=$(sudo emqx pid)
echo $mypid
sudo pidstat -h -r -u -v -p "$mypid" 5 > $local/server_results/test1/emqxstats_$b.txt &
# process for load testing
# jthreads = amount of publishing users
sleep 5
until sudo ~/Downloads/apache-jmeter-5.2.1/bin/jmeter -n -t $local/testplans/csv.jmx -Jport=$a | grep -m 1 "... end of run"; do : ; done
sudo emqx stop
kill %!
So I want to measure the CPU percentage from the interval between starting mosquitto and until the Apache Jmeter test finished when it reaches the last 2 lines.
Kind regards
I found the command I was looking after some more research.
ps -o pcpu -p $pid
this was exactly the command I needed, because it calculates the percentage over the lifetime of the process.

How to kill a process after a given real running time in Bash?

For killing a process after a given timeout in Bash, there is a nice command called timeout. However, I'm running my program on a multi-user server, and I don't want the performance of my program to be influenced by others. Is there a way to kill a process in Bash, after a given time that the program is really running?
On Bash+Linux, you can use ulimit -t. Here's from help ulimit:
-t the maximum amount of cpu time in seconds
Here's an example:
$ time bash -c 'ulimit -t 5; while true; do true; done'
Killed
real 0m8.549s
user 0m4.983s
sys 0m0.008s
The infinite loop process was scheduled (i.e. actually ran) for a total of 5 seconds before it was killed. Due to other processes competing for the CPU at the same time, this took 8.5 seconds of wall time.
A command like sleep 3600 would never be killed, since it doesn't use any CPU time.

Bash script: CPU stress test while watching clock speed

I am totally new to this forum and also new to bash, so please bear with me :).
I would like to write a bash script to conduct a CPU stress test while observing the clock speed. Therefore, I have done the following:
1.) For the CPU stress test, I have created a script named "bernoulli" with the following code:
#!/bin/bash
# argument 1: n
function bernoulli()
{
if (( $1 < 3 ))
then
echo 1
else
echo $(( $(bernoulli $(( $1 - 1 ))) + $(bernoulli $(( $1 - 2 ))) ))
fi
}
bernoulli $1
2.) I have figured out that by using the "timeout" command I can kill a task after a specified time. For example,
timeout 30s ./bernoulli 35
starts a task calculating the 35th bernoulli number and the task is killed after 30 seconds.
3.) I also found out that by typing
timeout 30s watch grep \"cpu MHz\" /proc/cpuinfo
I can watch the clock speed of my cores (updated every 2 seconds) for 30 seconds (at which point "timeout 30s" kills this task).
What I want: I would like to do the above stress test and simultaneously observe the clock speed. In other words, I would somehow run the two commands
timeout 30s ./bernoulli 35
timeout 30s watch grep \"cpu MHz\" /proc/cpuinfo
"at the same time". I hope I could make it clear what I would like to achieve. Can anyone help with my issue? Thanks a lot for every comment!
How about
timeout 30s ./bernoulli 35 &
timeout 30s watch grep \"cpu MHz\" /proc/cpuinfo
& at the end will make command to run at background, so that second timeout will be executed almost instantly after the first one.
PS: this is rather poor way to test modern CPU. You will be exercising only single core and most likely only limited part of your CPU (no sse, etc). It is not trivial to write CPU benchmark, so you might want to use one of already available. For example, you can take a look at sysbench with something like sysbench --test=cpu --cpu-max-prime=20000 run.
You can run them in a dedicated shell:
timeout 30s bash -c './bernoulli 35 & watch grep \"cpu MHz\" /proc/cpuinfo'
Note that the single & is not a typo. It is not a logical and, it runs the bernoulli script in background.

Scons command with time limit

I want to limit the execution time of a program I am running under Linux. I put in my scons script a line like:
Command("com​","",​"ulimit -t 1; myprogram")
and tested it with an infinite loop program: it did not work and the program ran forever.
Am I missing something?
-- tsf
ulimit -t 1 means that the limit is set to 1 second of CPU time. If your infinite loop program uses any sort of sleep in its inner loop then it will use practically no CPU time. This means it will not get killed in 1 second of real, on the clock time. In fact it may take minutes or hours to use up its 1 second allocation.
What happens if you run the command outside of SCons? Perhaps you don't have permission to change the limit at all...
ulimit -t 1; ./myprogram
For example, it may say the following if the limit is already set to 0:
bash: ulimit: cpu time: cannot modify limit: Operation not permitted
Edit: it seems that the -t option is broken on Ubuntu 9.04. A fix has been committed 05 June 2009, but it may take a while to trickle into the updates - it may not be fixed until 9.10.
As an historical note, this problem no longer exists in Ubuntu 10.04.
You can also use this script:
(taken from http://newsgroups.derkeiler.com/Archive/Comp/comp.sys.mac.system/2005-12/msg00247.html)
#!/bin/sh
# timeout script
#
usage()
{
echo "usage: timeout seconds command args ..."
exit 1
}
[[ $# -lt 2 ]] && usage
seconds=$1; shift
timeout()
{
sleep $seconds
kill -9 $pid >/dev/null 2>/dev/null
}
eval "$#" &
pid=$!
timeout &
wait $pid
.

Limiting certain processes to CPU % - Linux

I have the following problem: some processes, generated dynamically, have a tendency to eat 100% of CPU. I would like to limit all the process matching some criterion (e.g. process name) to a certain amount of CPU percentage.
The specific problem I'm trying to solve is harnessing folding#home worker processes. The best solution I could think of is a perl script that's executed periodically and uses the cpulimit utility to limit the processes (if you're interested in more details, check this blog post). It works, but it's a hack :/
Any ideas? I would like to leave the handling of processes to the OS :)
Thanks again for the suggestions, but we're still missing the point :)
The "slowDown" solution is essentially what the "cpulimit" utility does. I still have to take care about what processes to slow down, kill the "slowDown" process once the worker process is finished and start new ones for new worker processes. It's precisely what I did with the Perl script and a cron job.
The main problem is that I don't know beforehand what processes to limit. They are generated dynamically.
Maybe there's a way to limit all the processes of one user to a certain amount of CPU percentage? I already set up a user for executing the folding#home jobs, hoping that i could limit him with the /etc/security/limits.conf file. But the nearest I could get there is the total CPU time per user...
It would be cool if to have something that enables you to say:
"The sum of all CPU % usage of this user's processes cannot exceed 50%". And then let the processes fight for that 50% of CPU regarding to their priorities...
Guys, thanks for your suggestions, but it's not about priorities - I want to limit the CPU % even when there's plenty of CPU time available. The processes are already low priority, so they don't cause any performance issues.
I would just like to prevent the CPU from running on 100% for extended periods...
I had a slightly similar issue with gzip.
Assuming we want to decrease the CPU of a gzip process:
gzip backup.tar & sleep 2 & cpulimit --limit 10 -e gzip -z
Options:
I found sleep useful as the cpulimit sometimes didn't pick up the new gzip process immediately
--limit 10 limits gzip CPU usage to 10%
-z automatically closes cpulimit when gzip process finishes
Another option is to run the cpulimit daemon.
I don't remember and dont think there was something like this in the unix scheduler. You need a little program which controls the other process and does the following:
loop
wait for some time tR
send SIGSTOP to the process you want to be scheduled
wait for some time tP
send SIGCONT to the process.
loopEnd
the ratio tR/tP controls the cpu load.
Here is a little proof of concept. "busy" is the program which uses up your cpu time and which you want to be slowed-down by "slowDown":
> cat > busy.c:
main() { while (1) {}; }
> cc -o busy busy.c
> busy &
> top
Tasks: 192 total, 3 running, 189 sleeping, 0 stopped, 0 zombie
Cpu(s): 76.9% us, 6.6% sy, 0.0% ni, 11.9% id, 4.5% wa, 0.0% hi, 0.0% si
Mem: 6139696k total, 6114488k used, 25208k free, 115760k buffers
Swap: 9765368k total, 1606096k used, 8159272k free, 2620712k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
26539 cg 25 0 2416 292 220 R 90.0 0.0 3:25.79 busy
...
> cat > slowDown
while true; do
kill -s SIGSTOP $1
sleep 0.1
kill -s SIGCONT $1
sleep 0.1
done
> chmod +x slowDown
> slowDown 26539 &
> top
Tasks: 200 total, 4 running, 192 sleeping, 4 stopped, 0 zombie
Cpu(s): 48.5% us, 19.4% sy, 0.0% ni, 20.2% id, 9.8% wa, 0.2% hi, 2.0% si
Mem: 6139696k total, 6115376k used, 24320k free, 96676k buffers
Swap: 9765368k total, 1606096k used, 8159272k free, 2639796k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
26539 cg 16 0 2416 292 220 T 49.7 0.0 6:00.98 busy
...
ok, that script needs some more work (for example, to care for being INTR-upted and let the controlled process continue in case it was stopped at that moment), but you get the point. I would also write that little script in C or similar and compute the cpu ratio from a comand line argument....
regards
I think in Linux there is no solution to cap the cpu usage, but there is an acceptable way to limit any process to a certain CPU usage: http://ubuntuforums.org/showthread.php?t=992706
In case they remove the info, here is again
INSTALL PACKAGES
Install cpulimit package.
Code:
sudo apt-get install cpulimit
Install gawk package.
Code:
sudo apt-get install gawk
CREATE CPULIMIT DAEMON FILE
Open text editor with root privileges and save bellow daemon script text to new file /usr/bin/cpulimit_daemon.sh
Code:
#!/bin/bash
# ==============================================================
# CPU limit daemon - set PID's max. percentage CPU consumptions
# ==============================================================
# Variables
CPU_LIMIT=20 # Maximum percentage CPU consumption by each PID
DAEMON_INTERVAL=3 # Daemon check interval in seconds
BLACK_PROCESSES_LIST= # Limit only processes defined in this variable. If variable is empty (default) all violating processes are limited.
WHITE_PROCESSES_LIST= # Limit all processes except processes defined in this variable. If variable is empty (default) all violating processes are limited.
# Check if one of the variables BLACK_PROCESSES_LIST or WHITE_PROCESSES_LIST is defined.
if [[ -n "$BLACK_PROCESSES_LIST" && -n "$WHITE_PROCESSES_LIST" ]] ; then # If both variables are defined then error is produced.
echo "At least one or both of the variables BLACK_PROCESSES_LIST or WHITE_PROCESSES_LIST must be empty."
exit 1
elif [[ -n "$BLACK_PROCESSES_LIST" ]] ; then # If this variable is non-empty then set NEW_PIDS_COMMAND variable to bellow command
NEW_PIDS_COMMAND="top -b -n1 -c | grep -E '$BLACK_PROCESSES_LIST' | gawk '\$9>CPU_LIMIT {print \$1}' CPU_LIMIT=$CPU_LIMIT"
elif [[ -n "$WHITE_PROCESSES_LIST" ]] ; then # If this variable is non-empty then set NEW_PIDS_COMMAND variable to bellow command
NEW_PIDS_COMMAND="top -b -n1 -c | gawk 'NR>6' | grep -E -v '$WHITE_PROCESSES_LIST' | gawk '\$9>CPU_LIMIT {print \$1}' CPU_LIMIT=$CPU_LIMIT"
else
NEW_PIDS_COMMAND="top -b -n1 -c | gawk 'NR>6 && \$9>CPU_LIMIT {print \$1}' CPU_LIMIT=$CPU_LIMIT"
fi
# Search and limit violating PIDs
while sleep $DAEMON_INTERVAL
do
NEW_PIDS=$(eval "$NEW_PIDS_COMMAND") # Violating PIDs
LIMITED_PIDS=$(ps -eo args | gawk '$1=="cpulimit" {print $3}') # Already limited PIDs
QUEUE_PIDS=$(comm -23 <(echo "$NEW_PIDS" | sort -u) <(echo "$LIMITED_PIDS" | sort -u) | grep -v '^$') # PIDs in queue
for i in $QUEUE_PIDS
do
cpulimit -p $i -l $CPU_LIMIT -z & # Limit new violating processes
done
done
CHANGE VARIABLES TO YOUR ENVIRONMENT NEEDS
CPU_LIMIT
Change this variable in above script if you would like to omit CPU consumption for every process to any other percentage then 20%. Please read "If using SMP computer" chapter bellow if you have SMP computer (more then 1 CPU or CPU with more then 1 core).
DAEMON_INTERVAL
Change this variable in above script if you would like to have more/less regular checking. Interval is in seconds and default is set to 3 seconds.
BLACK_PROCESS_LIST and WHITE_PROCESSES_LIST
Variable BLACK_PROCESSES_LIST limits only specified processes. If variable is empty (default) all violating processes are limited.
Variable WHITE_PROCESSES_LIST limits all processes except processes defined in this variable. If variable is empty (default) all violating processes are limited.
One or both of the variables BLACK_PROCESSES_LIST and WHITE_PROCESSES_LIST has to be empty - it is not logical that both variables are defined.
You can specify multiple processes in one of this two variables using delimiter characters "|" (without double quotes). Sample: if you would like to cpulimit all processes except mysql, firefox and gedit processes set variable: WHITE_PROCESSES_LIST="mysql|firefox|gedit"
PROCEDURE TO AUTOMATICALLY START DAEMON AT BOOT TIME
Set file permissions for root user:
Code:
sudo chmod 755 /usr/bin/cpulimit_daemon.sh
Open text editor with root privileges and save bellow script to new file /etc/init.d/cpulimit
Code:
#!/bin/sh
#
# Script to start CPU limit daemon
#
set -e
case "$1" in
start)
if [ $(ps -eo pid,args | gawk '$3=="/usr/bin/cpulimit_daemon.sh" {print $1}' | wc -l) -eq 0 ]; then
nohup /usr/bin/cpulimit_daemon.sh >/dev/null 2>&1 &
ps -eo pid,args | gawk '$3=="/usr/bin/cpulimit_daemon.sh" {print}' | wc -l | gawk '{ if ($1 == 1) print " * cpulimit daemon started successfully"; else print " * cpulimit daemon can not be started" }'
else
echo " * cpulimit daemon can't be started, because it is already running"
fi
;;
stop)
CPULIMIT_DAEMON=$(ps -eo pid,args | gawk '$3=="/usr/bin/cpulimit_daemon.sh" {print $1}' | wc -l)
CPULIMIT_INSTANCE=$(ps -eo pid,args | gawk '$2=="cpulimit" {print $1}' | wc -l)
CPULIMIT_ALL=$((CPULIMIT_DAEMON + CPULIMIT_INSTANCE))
if [ $CPULIMIT_ALL -gt 0 ]; then
if [ $CPULIMIT_DAEMON -gt 0 ]; then
ps -eo pid,args | gawk '$3=="/usr/bin/cpulimit_daemon.sh" {print $1}' | xargs kill -9 # kill cpulimit daemon
fi
if [ $CPULIMIT_INSTANCE -gt 0 ]; then
ps -eo pid,args | gawk '$2=="cpulimit" {print $1}' | xargs kill -9 # release cpulimited process to normal priority
fi
ps -eo pid,args | gawk '$3=="/usr/bin/cpulimit_daemon.sh" {print}' | wc -l | gawk '{ if ($1 == 1) print " * cpulimit daemon can not be stopped"; else print " * cpulimit daemon stopped successfully" }'
else
echo " * cpulimit daemon can't be stopped, because it is not running"
fi
;;
restart)
$0 stop
sleep 3
$0 start
;;
status)
ps -eo pid,args | gawk '$3=="/usr/bin/cpulimit_daemon.sh" {print}' | wc -l | gawk '{ if ($1 == 1) print " * cpulimit daemon is running"; else print " * cpulimit daemon is not running" }'
;;
esac
exit 0
Change file's owner to root:
Code:
sudo chown root:root /etc/init.d/cpulimit
Change permissions:
Code:
sudo chmod 755 /etc/init.d/cpulimit
Add script to boot-up procedure directories:
Code:
sudo update-rc.d cpulimit defaults
Reboot to check if script starts cpulimit daemon at boot time:
Code:
sudo reboot
MANUALLY CHECK, STOP, START AND RESTART DAEMON
Note: Daemon and service in this tutorial has equal meaning.
Note: For users using prior to Ubuntu 8.10 (like Ubuntu 8.04 LTS) instead of service command use "sudo /etc/init.d/cpulimit status/start/stop/restart" syntax or install sysvconfig package using command: sudo apt-get install sysvconfig
Check if cpulimit service is running
Check command returns: "cpulimit daemon is running" if service is running, or "cpulimit daemon is not running" if service is not running.
Code:
sudo service cpulimit status
Start cpulimit service
You can manually start cpulimit daemon which will start to omit CPU consumption.
Code:
sudo service cpulimit start
Stop cpulimit service
Stop command stops cpulimit daemon (so no new process will be limited) and also sets to all existing limited processes to have full access to CPU, just like it was before cpulimit was not running.
Code:
sudo service cpulimit stop
Restart cpulimit service
If you change some variables settings in /usr/bin/cpulimit_daemon.sh like CPU_LIMIT, DAEMON_INTERVAL, BLACK_PROCESSES_LIST or WHITE_PROCESSES_LIST, then after changing settings you must restart service.
Code:
sudo service cpulimit restart
CHECK CPU CONSUMPTION WITH OR WITHOUT CPULIMIT DAEMON
Without daemon
1. stop cpulimit daemon (sudo service cpulimit stop)
2. execute CPU intensive tasks in background
3. execute command: top and check for %CPU column
Result of %CPU is probably more then 20% for each process.
With daemon turned on
1. start cpulimit daemon (sudo service cpulimit start)
2. execute the same CPU intensive tasks in background
3. execute command: top and check for %CPU column
Result of %CPU should be maximum 20% for each process.
Note: Don't forget at beginning %CPU can be more then 20%, because daemon has to catch violating process in interval of 3 seconds (set in script by default)
IF USING SMP COMPUTER
I have tested this code on Intel dual-core CPU computer - that behaves like SMP computer. Don't forget that top command and also cpulimit by default behaves in Irix mode, where 20% means 20% of one CPU. If there are two CPUs (or dual-core) then total %CPU can be 200%. In top command Irix mode can be turned off with command I (pressing +i when top command is running) and Solaris mode is turned on, where total amount of CPU is divided by number of CPUs, so %CPU can be no more then 100% on any number of CPU computer. Please read more info about top command in top man page (search for I command). Please also read more about how cpulimit is operating on SMP computer in cpulimit official page.
But how does cpulimit daemon operates on SMP computer? Always in Irix mode. So if you would like to spend 20% of CPU power on 2-CPU computer then 40% should be used for CPU_LIMIT variable in cpulimit daemon script.
UNINSTALL CPULIMIT DAEMON AND CPULIMIT PROGRAM
If you would like to get rid of cpulimit daemon you can clean up your system by removing cpulimit daemon and uninstalling cpulimit program.
Stop cpulimit daemon
Code:
sudo service cpulimit stop # Stop cpulimit daemon and all cpulimited processes
Remove daemon from boot-up procedure
Code:
sudo update-rc.d -f cpulimit remove # Remove symbolic links
Delete boot-up procedure
Code:
sudo rm /etc/init.d/cpulimit # Delete cpulimit boot-up script
Delete cpulimit daemon
Code:
sudo rm /usr/bin/cpulimit_daemon.sh # Delete cpulimit daemon script
Uninstall cpulimit program
Code:
sudo apt-get remove cpulimit
Uninstall gawk program
If you don't need this program for any other script, you can remote it.
Code:
sudo apt-get remove gawk
NOTE ABOUT AUTHORS
I have just written daemon for cpulimit (bash scripts above). I am not the author of cpulimit project. If you need more info about cpulimit program, please read official cpulimit web page: http://cpulimit.sourceforge.net/.
Regards,
Abcuser
I had a similar problem, and the other solutions presented in the thread don't address it at all. My solution works for me right now, but it is suboptimal, particularly for the cases where the process is owned by root.
My workaround for now is to try very hard to make sure that I don't have any long-running processes owned by root (like have backup be done only as a user)
I just installed the hardware sensors applet for gnome, and set up alarms for high and low temperatures on the CPU, and then set up the following commands for each alarm:
low:
mv /tmp/hogs.txt /tmp/hogs.txt.$$ && cat /tmp/hogs.txt.$$ | xargs -n1 kill -CONT
high:
touch /tmp/hogs.txt && ps -eo pcpu,pid | sort -n -r | head -1 | gawk '{ print $2 }' >> /tmp/hogs.txt && xargs -n1 kill -STOP < /tmp/hogs.txt
The good news is that my computer no longer overheats and crashes. The downside is that terminal processes get disconnected from the terminal when they get stopped, and don't get reconnected when they get the CONT signal. The other thing is that if it was an interactive program that caused the overheating (like a certain web browser plugin!) then it will freeze in the middle of what I'm doing while it waits for the CPU to cool off. It would be nicer to have CPU scaling take care of this at a global level, but the problem is that I only have two selectable settings on my CPU and the slow setting isn't slow enough to prevent overheating.
Just to re-iterate here, this has nothing at all to do with process priority, re-nicing,and obviously nothing to do with stopping jobs that run for a long time. This has to do with preventing CPU utilization from staying at 100% for too long, because the hardware is unable to dissipate the heat quickly enough when running at full capacity (idle CPU generates less heat than a fully loaded CPU).
Some other obvious possibilities that might help are:
Lower the CPU speed overall in the BIOS
Replace the heatsink or re-apply the thermal gel to see if that helps
Clean the heatsink with some compressed air
Replace the CPU fan
[edit]
Note: no more overheating at 100% CPU when I disable variable fan speed in the bios (asus p5q pro turbo). With the CPU fully loaded, each core tops out at 49 celcius.
Using cgroups' cpu.shares does nothing that a nice value wouldn't do. It sounds like you want to actually throttle the processes, which can definitely be done.
You will need to use a script or two, and/or edit /etc/cgconfig.conf to define the parameters you want.
Specifically, you want to edit the values cpu.cfs_period_us and cpu.cfs_quota_us. The process will then be allowed to run for cpu.cfs_quota_us microseconds per cpu.cfs_period_us microseconds.
For example:
If cpu.cfs_period_us = 50000 and cpu.cfs_quota_us = 10000 then the process will receive 20% of the CPU time maximum, no matter what else is going on.
In this screenshot I have given the process 2% of CPU time:
As far as the process is concerned it is running at 100%.
Settings cpu.shares on the other hand can and will still use 100% of the idle CPU time.
In this similar example I have given the process cpu.shares = 100 (of 1024):
As you can see the process is still consuming all the idle CPU time.
References:
http://manpages.ubuntu.com/manpages/precise/man5/cgconfig.conf.5.html
http://kennystechtalk.blogspot.co.uk/2015/04/throttling-cpu-usage-with-linux-cgroups.html
In a system that uses systemd, you can run a single process with a maximum CPU usage using a command like the following:
sudo systemd-run --scope --uid=1000 -p CPUQuota=20% my_heavy_computation.sh
This will use up to 20% of a single CPU core (or CPU thread if using hyper-threading).
I also had the need to limit CPU time for certain processes. Cpulimit is a good tool, but I always had to manually find out the PID and manually start cpulimit, so I wanted something more convenient.
I came up with this bash script:
#!/bin/bash
function lp
{
ps aux | grep $1 | termsql "select COL1 from tbl" > /tmp/tmpfile
while read line
do
TEST=`ps aux | grep "cpulimit -p $line" | wc -l`
[[ $TEST -eq "2" ]] && continue #cpulimit is already running on this process
cpulimit -p $line -l $2
done < /tmp/tmpfile
}
while true
do
lp gnome-terminal 5
lp system-journal 5
sleep 10
done
This example limits the cpu time of each gnome-terminal instance to 5% and the cpu time of each system-journal instance to 5% as well.
I used another script I created named termsql in this example to extract the PID . You can get it here:
https://gitorious.org/termsql/termsql/source/master:
You can limit the amount of cpu time with cgroups. The OS will handle resource management just like you ask for in you question.
Here is a wiki with examples: https://wiki.archlinux.org/index.php/Cgroups
Since the processes already run as a separate user limiting all process from that user should be the easiest solution.
I see at least two options:
Use "ulimit -t" in the shell that creates your process
Use "nice" at process creation or "renice" during runtime
PS + GREP + NICE
The nice command will probably help.
This can be done using setrlimit(2) (specifically by setting RLIMIT_CPU parameter).
Throwing some sleep calls in there should force the process off the CPU for a certain time. If you sleep 30 seconds once a minute, your process shouldn't average more than 50% CPU usage during that minute.
I dont really see why you want to limit the CPU time... you should limit the total load on that machine, and the load is determined by IO operations mostly .
Ex: if i create a while(1){} loop, it will get the total load to 1.0, but if this loop does some disk writes the load jumps to 2.0... 4.0. And that's what killing your machine, not the CPU usage. The CPU usage can be easily handled by nice/renice.
Anyways, you could make a script that does a 'kill -SIGSTOP PID' for a specific PID, when the load gets too high, and kill -SIGCONT when everything gets back to normal... The PID's can be determined by using the 'px aux' command, because i see that it displays the CPU usage, and you should be able to sort the list using that column. I think this the whole thing could be done in bash...
You could scale down the CPU frequency. Then you don't have to worry about the individual processes. When you need more cpu's, scale the frequency back up.

Resources