Where are sys_fork, sys_execve and sys_exit functions in linux kernel 4.10 - linux

I needed to analyze sys_fork(), sys_execve(), sys_exit() kernel functions. I wrote a simple program that calls fork() and watched what system calls it uses. There was no sys_fork(). I find out that in modern kernel fork() calls function clone(). And basically it's the same thing with all three functions that i am interested in.
I tried to look at the sources of linux kernel and didn't find any definitions of sys_fork(), sys_execve(), sys_exit(). They are defined in headers, but there is no definitions for any architecture.
So my question is: are this functions still used in modern linux kernel, or they were removed and replaced in linux 3.x (I only found this functions in kernel 2.x)?

Related

Hook ALL system calls in Linux

The goal is to add a hook to all system calls in Linux, that is, the hook function should get called before any of those 300 Linux system calls are invoked.
There are sys_call_table hacks (e.g. [here]), which however only allow to hook one or few system calls; that is, if read() needs to be hijacked, the sys_read entry in sys_call_table is modified to the new function that has a hook handler.
Of course, you can manually hook all 300 syscall entries; but I am looking for a more elegant approach with few code modification.
A possible approach is to change the file entry_64.S where ENTRY(system_call) reside. However, as I need to use linux kernel module and hack a live system, I find it difficult to modify the memory image of entry_64.S in a running Linux system.
So my question is:
if the entry_64.S design makes sense, how to modify a live memory area where kernel code resides (kernel code segment)?
if it does not make sense, in general, how to modify one (or few) place in Linux src code and allows all sys calls being hooked.
PS: platform: Linux 3.16 and x86_64
PS2: Again my question is DIFFERENT from those sys_call_table hacks in prior stack overflow questions. See paragraph 2 for details.

How to invoke newly added system call by the function id without using syscall(__NR_mysyscall)

I am working with Linux-3.9.3 kernel in Ubuntu 10.04. I have added a basic system call in the kernel directory of the linux-3.9.3 source tree. I am able to use it with syscall() by passing my newly system call number in it as an argument. But I want to invoke it directly by using its method name as in the case of getpid() or open() system calls. Can any one help me to add it in GNU C library. I went through few documents but did not get any clear idea of how to accomplish it.
Thanks!!!
Assuming you are on a 64 bits Linux x86-64, the relevant ABI is the x86-64 ABI. Read also the x86 calling conventions wikipage and the linux assembly howto and syscalls(2)
So syscalls are using a different convention than ordinary function calls (e.g. all arguments are passed by registers, error condition could use the carry bit). Hence, you need a C wrapper to make your syscall available to C applications.
You could look into the source code of existing C libraries, like GNU libc or musl libc (so you'll need to make your own library for that syscall).
The MUSL libc source code is very readable, see e.g. its src/unistd/fsync.c as an example.
I would suggest wrapping your new syscall in your own library without patching libc. Notice that some uncommon syscalls are sitting in a different library, e.g. request_key(2) has its C wrapper in libkeyutils

Linux kernel assembly and logic

My question is somewhat weird but I will do my best to explain.
Looking at the languages the linux kernel has, I got C and assembly even though I read a text that said [quote] Second iteration of Unix is written completely in C [/quote]
I thought that was misleading but when I said that kernel has assembly code I got 2 questions of the start
What assembly files are in the kernel and what's their use?
Assembly is architecture dependant so how can linux be installed on more than one CPU architecture
And if linux kernel is truly written completely in C than how can it get GCC needed for compiling?
I did a complete find / -name *.s
and just got one assembly file (asm-offset.s) somewhere in the /usr/src/linux-headers-`uname -r/
Somehow I don't think that is helping with the GCC working, so how can linux work without assembly or if it uses assembly where is it and how can it be stable when it depends on the arch.
Thanks in advance
1. Why assembly is used?
Because there are certain things then can be done only in assembly and because assembly results in a faster code. For eg, "you can get access to unusual programming modes of your processor (e.g. 16 bit mode to interface startup, firmware, or legacy code on Intel PCs)".
Read here for more reasons.
2. What assembly file are used?
From: https://www.kernel.org/doc/Documentation/arm/README
"The initial entry into the kernel is via head.S, which uses machine
independent code. The machine is selected by the value of 'r1' on
entry, which must be kept unique."
From https://www.ibm.com/developerworks/library/l-linuxboot/
"When the bzImage (for an i386 image) is invoked, you begin at ./arch/i386/boot/head.S in the start assembly routine (see Figure 3 for the major flow). This routine does some basic hardware setup and invokes the startup_32 routine in ./arch/i386/boot/compressed/head.S. This routine sets up a basic environment (stack, etc.) and clears the Block Started by Symbol (BSS). The kernel is then decompressed through a call to a C function called decompress_kernel (located in ./arch/i386/boot/compressed/misc.c). When the kernel is decompressed into memory, it is called. This is yet another startup_32 function, but this function is in ./arch/i386/kernel/head.S."
Apart from these assembly files, lot of linux kernel code has usage of inline assembly.
3. Architecture dependence?
And you are right about it being architecture dependent, that's why the linux kernel code is ported to different architecture.
Linux porting guide
List of supported arch
Things written mainly in assembly in Linux:
Boot code: boots up the machine and sets it up in a state in which it can start executing C code (e.g: on some processors you may need to manually initialize caches and TLBs, on x86 you have to switch to protected mode, ...)
Interrupts/Exceptions/Traps entry points/returns: there you need to do very processor-specific things, e.g: saving registers and reenabling interrupts, and eventually restoring registers and properly returning to user mode. Some exceptions may be handled entirely in assembly.
Instruction emulation: some CPU models may not support certain instructions, may not support unaligned data access, or may not have an FPU. An option is using emulation when getting the corresponding exception.
VDSO: the VDSO is a virtual library that the kernel maps into userspace. It allows e.g: selecting the optimal syscall sequence for the current CPU (on x86 use sysenter/syscall instead of int 0x80 if available), and implementing certain system calls without requiring a context switch (e.g: gettimeofday()).
Atomic operations and locks: Maybe in a future some of these could be written using C11 support for atomic operations.
Copying memory from/to user mode: Besides using an optimized copy, these check for out-of-bounds access.
Optimized routines: the kernel has optimized version of some routines, e.g: crypto routines, memset, clear_page, csum_copy (checksum and copy to another place IP data in one pass), ...
Support for suspend/resume and other ACPI/EFI/firmware thingies
BPF JIT: newer kernels include a JIT compiler for BPF expressions (used for example by tcpdump, secmode mode 2, ...)
...
To support different architectures, Linux has assembly code (re-)written for each architecture it supports (and sometimes, there are several implementations of some code for different platforms using the same CPU architecture). Just look at all the subdirectories under arch/
Assembly is needed for a couple of reasons.
There are many instructions that are needed for the operation of an operating system that have no C equivalent, at least on most processors. A good example on Intel x86/64 processors is the iret instruciton, which returns from hardware/software interrupts. These interrupts are key to handling hardware events (like a keyboard press) and system calls from programs on older processors.
A computer does not start up in a state that is immediately ready for execution of C code. For an Intel example, when execution gets to the startup routine the processor may not be in 32-bit mode (or 64-bit mode), and the stack required by C also may not be ready. There are some other features present in some processors (like paging) which need to be turned on from assembly as well.
However, most of the Linux kernel is written in C, which interfaces with some platform specific C/assembly code through standardized interfaces. By separating the parts in this way, most of the logic of the Linux kernel can be shared between platforms. The build system simply compiles the platform independent and dependent parts together for specific platforms, which results in different executable kernel files for different platforms (and kernel configurations for that matter).
Assembly code in the kernel is generally used for low-level hardware interaction that can't be done directly from C. They're like a platform- specific foundation that's used by higher-level parts of the kernel that are written in C.
The kernel source tree contains assembly code for a variety of systems. When you compile a kernel for a particular type of system (such as an x86 PC), only the appropriate assembly code for that platform is included in the build process.
Linux is not the second version of Unix (or Unix in general). It is Unix compatible, but Unix and Linux have separate histories and, in terms of code base (of their kernels), are completely separate. Linus Torvald's idea was to write an open source Unix.
Some of the lower level things like some of the architecture dependent parts of memory management are done in assembly. The old (but still available) Linux kernel API for x86, int 0x80, is implemented in assembly. There are probably other places in the kernel that are implemented in assembly, but I don't know any others.
When you compile the kernel, you select an architecture to target. Depending on the target, the right assembly files for that architecture are included in the build.
The reason you don't find anything is because you're searching the headers, not the sources. Download a tar ball from kernel.org and search that.

System calls : difference between sys_exit(), SYS_exit and exit()

What is the difference between SYS_exit, sys_exit() and exit()?
What I understand :
The linux kernel provides system calls, which are listed in man 2 syscalls.
There are wrapper functions of those syscalls provided by glibc which have mostly similar names as the syscalls.
My question : In man 2 syscalls, there is no mention of SYS_exit and sys_exit(), for example. What are they?
Note : The syscall exit here is only an example. My question really is : What are SYS_xxx and sys_xxx()?
I'll use exit() as in your example although this applies to all system calls.
The functions of the form sys_exit() are the actual entry points to the kernel routine that implements the function you think of as exit(). These symbols are not even available to user-mode programmers. That is, unless you are hacking the kernel, you cannot link to these functions because their symbols are not available outside the kernel. If I wrote libmsw.a which had a file scope function like
static int msw_func() {}
defined in it, you would have no success trying to link to it because it is not exported in the libmsw symbol table; that is:
cc your_program.c libmsw.a
would yield an error like:
ld: cannot resolve symbol msw_func
because it isn't exported; the same applies for sys_exit() as contained in the kernel.
In order for a user program to get to kernel routines, the syscall(2) interface needs to be used to effect a switch from user-mode to kernel mode. When that mode-switch (somtimes called a trap) occurs a small integer is used to look up the proper kernel routine in a kernel table that maps integers to kernel functions. An entry in the table has the form
{SYS_exit, sys_exit},
Where SYS_exit is an preprocessor macro which is
#define SYS_exit (1)
and has been 1 since before you were born because there hasn't been reason to change it. It also happens to be the first entry in the table of system calls which makes look up a simple array index.
As you note in your question, the proper way for a regular user-mode program to access sys_exit is through the thin wrapper in glibc (or similar core library). The only reason you'd ever need to mess with SYS_exit or sys_exit is if you were writing kernel code.
This is now addressed in man syscall itself,
Roughly speaking, the code belonging to the system call with number __NR_xxx defined in /usr/include/asm/unistd.h can be found in the Linux kernel source in the routine sys_xxx(). (The dispatch table for i386 can be found in /usr/src/linux/arch/i386/kernel/entry.S.) There are many exceptions, however, mostly because older system calls were superseded by newer ones, and this has been treated somewhat unsystematically. On platforms with proprietary operating-system emulation, such as parisc, sparc, sparc64, and alpha, there are many additional system calls; mips64 also contains a full set of 32-bit system calls.
At least now /usr/include/asm/unistd.h is a preprocessor hack that links to either,
/usr/include/asm/unistd_32.h
/usr/include/asm/unistd_x32.h
/usr/include/asm/unistd_64.h
The C function exit() is defined in stdlib.h. Think of this as a high level event driven interface that allows you to register a callback with atexit()
/* Call all functions registered with `atexit' and `on_exit',
in the reverse of the order in which they were registered,
perform stdio cleanup, and terminate program execution with STATUS. */
extern void exit (int __status) __THROW __attribute__ ((__noreturn__));
So essentially the kernel provides an interface (C symbols) called __NR_xxx. Traditionally people want sys_exit() which is defined with a preprocessor macro SYS_exit. This macro creates the sys_exit() function. The exit() function is part of the standard C library stdlib.h and ported to other operating systems that lack the Linux Kernel ABI entirely (there may not be __NR_xxx functions) and potentially don't even have sys_* functions available either (you could write exit() to send the interrupt or use VDSO in Assembly).

Why can't we use C standard library functions in kernel development?

I just got started with learning kernel development and had a small doubt. Why can't we use c functions in kernel development after linking it with the c library? Why is it that the kernel is never linked with a c library but has its own implementation of some standard c functions like printk() instead of printf(). IF the kernel is written in c and compiled with the help of a c compiler then why can't we use the standard function from the c library?
Because the GNU C Library which you are familiar with is implemented for user mode, not kernel mode. The kernel cannot access a userspace API (which might invoke a syscall to the Linux kernel).
From the KernelNewbies FAQ
Can I use library functions in the kernel ?
System libraries (such as glibc, libreadline, libproplist, whatever) that are typically available to userspace programmers are unavailable to kernel programmers. When a process is being loaded the loader will automatically load any dependent libraries into the address space of the process. None of this mechanism is available to kernel programmers: forget about ISO C libraries, the only things available is what is already implemented (and exported) in the kernel and what you can implement yourself.
Note that it is possible to "convert" libraries to work in the kernel; however, they won't fit well, the process is tedious and error-prone, and there might be significant problems with stack handling (the kernel is limited to a small amount of stack space, while userspace programs don't have this limitation) causing random memory corruption.
Many of the commonly requested functions have already been implemented in the kernel, sometimes in "lightweight" versions that aren't as featureful as their userland counterparts. Be sure to grep the headers for any functions you might be able to use before writing your own version from scratch. Some of the most commonly used ones are in include/linux/string.h.
Whenever you feel you need a library function, you should consider your design, and ask yourself if you could move some or all the code into user-space instead.
If you need to use functions from standard library, you have to re-implement that functionality because of a simple reason - there is no standard C library.
C library is basically implemented on the top of the Linux kernel (or other operating system's kernel).
For instance, C library's mkdir(3) function is basically nothing more than a wrapper for Linux kernel's system call mkdir(2).
http://linux.die.net/man/3/mkdir
http://linux.die.net/man/2/mkdir

Resources