applying regression on bag of words - python-3.x

I have a text document and did clean the text. Now I have a list of words that I want to apply regression on, but I don't know how to do it. Can anyone please help?
And can I use other Machine learning algorithms on the list of words??

Please provide details on what kind of prediction are you doing?
In general case(using scikit-learn):
Step-1 : Use Snowball Stemmer to stem words
Step-2 : Using this parsed Data create features and labels training and test sets.
Step-3 : Convert text vectorization to lists of numbers using tfidfvectorizer
Step-4 : As it will be a huge set of features, we need to select top 10 (or whatever you want) Percentile using selectpercentile to remove less weighted features.
Now you can use your feature set for whatever purpose you want!
Hope this helps :)
PS: You will need to do some research on nltk and vectorizer for appropriate parameters and tuning

Related

Is there any way to classify text based on some given keywords using python?

i been trying to learn a bit of machine learning for a project that I'm working in. At the moment I managed to classify text using SVM with sklearn and spacy having some good results, but i want to not only classify the text with svm, I also want it to be classified based on a list of keywords that I have. For example: If the sentence has the word fast or seconds I would like it to be classified as performance.
I'm really new to machine learning and I would really appreciate any advice.
I assume that you are already taking a portion of your data, classifying it manually and then using the result as your training data for the SVM algorithm.
If yes, then you could just append your list of keywords (features) and desired classifications (labels) to your training data. If you are not doing it already, I'd recommend using the SnowballStemmer on your training data features.

NLP Structure Question (best way for doing feature extraction)

I am building an NLP pipeline and I am trying to get my head around in regards to the optimal structure. My understanding at the moment is the following:
Step1 - Text Pre-processing [a. Lowercasing, b. Stopwords removal, c. stemming, d. lemmatisation,]
Step 2 - Feature extraction
Step 3 - Classification - using the different types of classifier(linearSvC etc)
From what I read online there are several approaches in regard to feature extraction but there isn't a solid example/answer.
a. Is there a solid strategy for feature extraction ?
I read online that you can do [a. Vectorising usin ScikitLearn b. TF-IDF]
but also I read that you can use Part of Speech or word2Vec or other embedding and Name entity recognition.
b. What is the optimal process/structure of using these?
c. On the text pre-processing I am ding the processing on a text column on a df and the last modified version of it is what I use as an input in my classifier. If you do feature extraction do you do that in the same column or you create a new one and you only send to the classifier the features from that column?
Thanks so much in advance
The preprocessing pipeline depends mainly upon your problem which you are trying to solve. The use of TF-IDF, word embeddings etc. have their own restrictions and advantages.
You need to understand the problem and also the data associated with it. In order to make the best use of the data, we need to implement the proper pipeline.
Specifically for text related problems, you will find word embeddings to be very useful. TF-IDF is useful when the problem needs to be solved emphasising the words with lesser frequency. Word embeddings, on the other hand, convert the text to a N-dimensional vector which may show up similarity with some other vector. This could bring a sense of association in your data and the model can learn the best features possible.
In simple cases, we can use a bag of words representation to tokenize the texts.
So, you need to discover the best approach for your problem. If you are solving a problems which closely resembles the famous NLP problems like IMDB review classification, sentiment analysis on Twitter data, then you can find a number of approaches on the internet.

How to create a simple feature to detect sentiment of a sentence using CRFs?

I want to use CRF for sentence level sentiment classiciation (positive or negative). But, I am lost on how to create a very simple feature to detect this using either CRFsuite or CRF++. Been trying for a few days, can anyone suggest how to design a simple feature which I can use as starting point to understand how to use the tools.
Thanks.
You could start providing gazetteers containing words separated by sentiment (e.g. positive adjectives, negative nouns, etc) and so using CRF to label relevant portions of the sentences. Using gazetteers you can also provide lists of other words which won't be labeled themselves, but could help identifying sentiment terms. You could also use WordNet instead of gazetteers. Your gazetteer features could be binary, i.e. gazetteer matched or not matched. Check out http://crfpp.googlecode.com for more examples and references.
I hope this helps!

Timeline Detection

I am trying to do a timeline detection problem using text classification. As a newbie I am confused as to how I can go about with this. Is this a classification problem? i.e, Can I use the years(timelines) as outcomes and solve this as a classification problem?
You should be able to solve this as a classification problem as you suggest. An option could be to find or build a corpus consisting of texts tagged with the period in which they're set, and train a classification algorithm on this data set.
Another option could be to train a word space model on such a data set, and generate vectors for different periods of time (e.g. the 50s, 60s etc.). You could then create a document vector for the text you wish to classify, and find which of these time vectors yields the best match.
Might not work, but it could be interesting to see what results you get.
Hope this helps!

Sentiment analysis with NLTK python for sentences using sample data or webservice?

I am embarking upon a NLP project for sentiment analysis.
I have successfully installed NLTK for python (seems like a great piece of software for this). However,I am having trouble understanding how it can be used to accomplish my task.
Here is my task:
I start with one long piece of data (lets say several hundred tweets on the subject of the UK election from their webservice)
I would like to break this up into sentences (or info no longer than 100 or so chars) (I guess i can just do this in python??)
Then to search through all the sentences for specific instances within that sentence e.g. "David Cameron"
Then I would like to check for positive/negative sentiment in each sentence and count them accordingly
NB: I am not really worried too much about accuracy because my data sets are large and also not worried too much about sarcasm.
Here are the troubles I am having:
All the data sets I can find e.g. the corpus movie review data that comes with NLTK arent in webservice format. It looks like this has had some processing done already. As far as I can see the processing (by stanford) was done with WEKA. Is it not possible for NLTK to do all this on its own? Here all the data sets have already been organised into positive/negative already e.g. polarity dataset http://www.cs.cornell.edu/People/pabo/movie-review-data/ How is this done? (to organise the sentences by sentiment, is it definitely WEKA? or something else?)
I am not sure I understand why WEKA and NLTK would be used together. Seems like they do much the same thing. If im processing the data with WEKA first to find sentiment why would I need NLTK? Is it possible to explain why this might be necessary?
I have found a few scripts that get somewhat near this task, but all are using the same pre-processed data. Is it not possible to process this data myself to find sentiment in sentences rather than using the data samples given in the link?
Any help is much appreciated and will save me much hair!
Cheers Ke
The movie review data has already been marked by humans as being positive or negative (the person who made the review gave the movie a rating which is used to determine polarity). These gold standard labels allow you to train a classifier, which you could then use for other movie reviews. You could train a classifier in NLTK with that data, but applying the results to election tweets might be less accurate than randomly guessing positive or negative. Alternatively, you can go through and label a few thousand tweets yourself as positive or negative and use this as your training set.
For a description of using Naive Bayes for sentiment analysis with NLTK: http://streamhacker.com/2010/05/10/text-classification-sentiment-analysis-naive-bayes-classifier/
Then in that code, instead of using the movie corpus, use your own data to calculate word counts (in the word_feats method).
Why dont you use WSD. Use Disambiguation tool to find senses. and use map polarity to the senses instead of word. In this case you will get a bit more accurate results as compared to word index polarity.

Resources