Take part of rdd and keep it rdd - apache-spark

I can't find a way to take just a part on rdd. take seems promising but it returns a list instead of rdd. I of course can then convert it to an rdd, but this seems wasteful and ugly.
my_rdd = sc.textFile("my_file.csv")
part_of_my_rdd = sc.parallelize(my_rdd.take(10000))
I there a better way to do this?

Yes, indeed there is a better way. You can use the sample method from RDDs, it states:
sample(withReplacement, fraction, seed=None)
Return a sampled subset of this RDD.
quantity = 10000
my_rdd = sc.textFile("my_file.csv")
part_of_my_rdd = my_rdd.sample(False, quantity / my_rdd.count())

#Akavall , it is a good idea. but the format have some change.
my_rdd = sc.textFile("my_file.csv")
part_of_my_rdd = sc.parallelize(my_rdd.take(10000)).map(x=>x.slice(1, x.length-1))
remove the brackets is OK!

Related

Spark: problem with crossJoin (takes a tremendous amount of time)

First of all, I have to say that I've already tried everything I know or found on google (Including this Spark: How to use crossJoin which is exactly my problem).
I have to calculate the Cartesian product between two DataFrame - countries and units such that -
A.cache().count()
val units = A.groupBy("country")
.agg(sum("grade").as("grade"),
sum("point").as("point"))
.withColumn("AVR", $"grade" / $"point" * 1000)
.drop("point", "grade")
val countries = D.select("country").distinct()
val C = countries.crossJoin(units)
countries contains a countries name and its size bounded by 150. units is DataFrame with 3 rows - an aggregated result of other DataFrame. I checked 100 times the result and those are the sizes indeed - and it takes 5 hours to complete.
I know I missed something. I've tried caching, repartitioning, etc.
I would love to get some other ideas.
I have two suggestions for you:
Look at the explain plan and the spark properties, for the amount of data you have mentioned 5 hours is a really long time. My expectation is you have way too many shuffles, you can look at different properties like : spark.sql.shuffle.partitions
Instead of doing a cross join, you can maybe do a collect and explore broadcasts
https://sparkbyexamples.com/spark/spark-broadcast-variables/ but do this only on small amounts of data as this data is brought back to the driver.
What is the action you are doing afterwards with C?
Also, if these datasets are so small, consider collecting them to the driver, and doing these manupulation there, you can always spark.createDataFrame later again.
Update #1:
final case class Unit(country: String, AVR: Double)
val collectedUnits: Seq[Unit] = units.as[Unit].collect
val collectedCountries: Seq[String] = countries.collect
val pairs: Seq[(String, Unit)] = for {
unit <- units
country <- countries
} yield (country, unit)
I've finally understood the problem - Spark used too many excessive numbers of partitions, and thus the shuffle takes a lot of time.
The way to solve it is to change the default number -
sparkSession.conf.set("spark.sql.shuffle.partitions", 10)
And it works like magic.

Spark: Use aggregation function on all columns [duplicate]

The question is pretty much in the title: Is there an efficient way to count the distinct values in every column in a DataFrame?
The describe method provides only the count but not the distinct count, and I wonder if there is a a way to get the distinct count for all (or some selected) columns.
In pySpark you could do something like this, using countDistinct():
from pyspark.sql.functions import col, countDistinct
df.agg(*(countDistinct(col(c)).alias(c) for c in df.columns))
Similarly in Scala :
import org.apache.spark.sql.functions.countDistinct
import org.apache.spark.sql.functions.col
df.select(df.columns.map(c => countDistinct(col(c)).alias(c)): _*)
If you want to speed things up at the potential loss of accuracy, you could also use approxCountDistinct().
Multiple aggregations would be quite expensive to compute. I suggest that you use approximation methods instead. In this case, approxating distinct count:
val df = Seq((1,3,4),(1,2,3),(2,3,4),(2,3,5)).toDF("col1","col2","col3")
val exprs = df.columns.map((_ -> "approx_count_distinct")).toMap
df.agg(exprs).show()
// +---------------------------+---------------------------+---------------------------+
// |approx_count_distinct(col1)|approx_count_distinct(col2)|approx_count_distinct(col3)|
// +---------------------------+---------------------------+---------------------------+
// | 2| 2| 3|
// +---------------------------+---------------------------+---------------------------+
The approx_count_distinct method relies on HyperLogLog under the hood.
The HyperLogLog algorithm and its variant HyperLogLog++ (implemented in Spark) relies on the following clever observation.
If the numbers are spread uniformly across a range, then the count of distinct elements can be approximated from the largest number of leading zeros in the binary representation of the numbers.
For example, if we observe a number whose digits in binary form are of the form 0…(k times)…01…1, then we can estimate that there are in the order of 2^k elements in the set. This is a very crude estimate but it can be refined to great precision with a sketching algorithm.
A thorough explanation of the mechanics behind this algorithm can be found in the original paper.
Note: Starting Spark 1.6, when Spark calls SELECT SOME_AGG(DISTINCT foo)), SOME_AGG(DISTINCT bar)) FROM df each clause should trigger separate aggregation for each clause. Whereas this is different than SELECT SOME_AGG(foo), SOME_AGG(bar) FROM df where we aggregate once. Thus the performance won't be comparable when using a count(distinct(_)) and approxCountDistinct (or approx_count_distinct).
It's one of the changes of behavior since Spark 1.6 :
With the improved query planner for queries having distinct aggregations (SPARK-9241), the plan of a query having a single distinct aggregation has been changed to a more robust version. To switch back to the plan generated by Spark 1.5’s planner, please set spark.sql.specializeSingleDistinctAggPlanning to true. (SPARK-12077)
Reference : Approximate Algorithms in Apache Spark: HyperLogLog and Quantiles.
if you just want to count for particular column then following could help. Although its late answer. it might help someone. (pyspark 2.2.0 tested)
from pyspark.sql.functions import col, countDistinct
df.agg(countDistinct(col("colName")).alias("count")).show()
Adding to desaiankitb's answer, this would provide you a more intuitive answer :
from pyspark.sql.functions import count
df.groupBy(colname).count().show()
You can use the count(column name) function of SQL
Alternatively if you are using data analysis and want a rough estimation and not exact count of each and every column you can use approx_count_distinct function
approx_count_distinct(expr[, relativeSD])
This is one way to create dataframe with every column counts :
> df = df.to_pandas_on_spark()
> collect_df = []
> for i in df.columns:
> collect_df.append({"field_name": i , "unique_count": df[i].nunique()})
> uniquedf = spark.createDataFrame(collect_df)
Output would like below. I used this with another dataframe to compare values if columns names are same.Other dataframe was also created way then joined.
df_prod_merged = uniquedf1.join(uniquedf2, on='field_name', how="left")
This is easy way to do it might be expensive on very huge data like 1 tb to process but still very efficient when used to_pandas_on_spark()

How to process tab-separated files in Spark?

I have a file which is tab separated. The third column should be my key and the entire record should be my value (as per Map reduce concept).
val cefFile = sc.textFile("C:\\text1.txt")
val cefDim1 = cefFile.filter { line => line.startsWith("1") }
val joinedRDD = cefFile.map(x => x.split("\\t"))
joinedRDD.first().foreach { println }
I am able to get the value of first column but not third. Can anyone suggest me how I could accomplish this?
After you've done the split x.split("\\t") your rdd (which in your example you called joinedRDD but I'm going to call it parsedRDD since we haven't joined it with anything yet) is going to be an RDD of Arrays. We could turn this into an array of key/value tuples by doing parsedRDD.map(r => (r(2), r)). That being said - you aren't limited to just map & reduce operations in Spark so its possible that another data structure might be better suited. Also for tab separated files, you could use spark-csv along with Spark DataFrames if that is a good fit for the eventual problem you are looking to solve.

SPARK Is sample method on Dataframes uniform sampling?

I want to choose randomly a select number of rows from a dataframe and I know sample method does this, but I am concerned that my randomness should be uniform sampling? So, I was wondering if the sample method of Spark on Dataframes is uniform or not?
Thanks
There are a few code paths here:
If withReplacement = false && fraction > .4 then it uses a souped up random number generator (rng.nextDouble() <= fraction) and lets that do the work. This seems like it would be pretty uniform.
If withReplacement = false && fraction <= .4 then it uses a more complex algorithm (GapSamplingIterator) that also seems pretty uniform. At a glance, it looks like it should be uniform also
If withReplacement = true it does close to the same thing, except it can duplicate by the looks of it, so this looks to me like it would not be as uniform as the first two
yes it is uniform, for more information you can try below code.
I hope this clarifies.
I think this should do the trick, where "data" is your data frame .
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainingData, testData) = (splits(0), splits(1))

Ordered union on spark RDDs

I am trying to do a sort on key of key-record pairs using apache spark. The key is 10 bytes long and the value is about 90 bytes long. In other words I am trying to replicate the sort benchmark Databricks used to break the sorting record. One of the things I noticed from the documentation is that they sorted on key-line-number pairs as opposed to key-record pairs to probably be cache/tlb friendly. I tried to replicate this approach but have not found a suitable solution. Here is what I have tried:
var keyValueRDD_1 = input.map(x => (x.substring(0, 10), x.substring(12, 13)))
var keyValueRDD_2 = input.map(x => (x.substring(0, 10), x.substring(14, 98))
var result = keyValueRDD_1.sortByKey(true, 1) // assume partitions = 1
var unionResult = result.union(keyValueRDD_2)
var finalResult = unionResult.foldByKey("")(_+_)
When I do a union on the result RDD and keyValueRDD_2 RDD and print the output of the unionResultRDD, the result and keyValueRDD_2 are not interleaved. In other words, it looks like the unionResult RDD has the keyValueRDD_2 contents followed by the result RDD contents. However, when I do a foldByKey operation which combines the values of same key into a single key-value pair, the sorted order is destroyed. I need to do a fold by key operation in order to save the result as the original key-record pair. Is there an alternate rdd function that could be used to achieve this?
Any tips or suggestions would be quite useful.
Thanks
The union method just puts two RDDs one after the other, except if they have the same partitioner. Then it joins the partitions.
What you want to do is impossible.
When you have one RDD sorted (keyValueRDD_1) and another unsorted RDD with the same keys (keyValueRDD_2) then the only way to get the second RDD sorted is to sort it.
The existence of the sorted RDD does not help us sort the second RDD.
The Databricks article talks about an optimization that happens locally on the executors. After the shuffle step, the records are roughly sorted. Each partition now covers a range of keys, but the partitions are unsorted.
Now you have to sort each partition locally, and this is where the prefix optimization helps with cache locality.

Resources