I know QuickHull algorithm runs in Theta(n), if convex hull is triangular or it has constant size.
What's this means?
I'm not sure about the shape (if it looks a triangle), because the algorithm uses 4 extreme points.
Thanks
If the number of vertices of the convex hull, let H, is a constant (doesn't depend on N), then QuickHull takes a time proportional to N (more precisely c1.N < T < c2.N for two constants c1 and c2).
When H=3, the hull is a triangle. Regardless the way the algorithm works, it has to return this triangle. Careful implementations should even work for H=2 (a line segment) or H=1 (a single point).
Related
I need to offset a curve, which by the simplest way is just shifting the points perpendicularly. I can access each point to calculate angle of each line along given path, for now I use atan2. Then I take those two angle and make average of it. It returns the shortest angle, not what I need in this case.
How can I calculate angle of each connection? Concerning that I am not interested in the shortest angle but the one that would create parallel offset curve.
Assuming 2D case...
So do a cross product of direction vectors of 2 neighboring lines the sign of z coordinate of the result will tell you if the lines are CW/CCW
So if you got 3 consequent control points on the polyline: p0,p1,p2 then:
d1 = p1-p0
d2 = p2-p1
if you use some 3D vector math then convert them to 3D by setting:
d1.z=0;
d2.z=0;
now compute 3D cross:
n = cross(d1,d2)
which returns vector perpendicular to both vectors of size equals to the area of quad (parallelogram) constructed with d1,d2 as base vectors. The direction (from the 2 possible) is determined by the winding rule of the p0,p1,p2 so inspecting z of the result is enough.
The n.x,n.y are not needed so you can compute directly without doing full cross product:
n.z=(d1.x*d2.y)-(d1.y*d2.x)
if (n.z>0) case1
if (n.z<0) case2
if the case1 is CW or CCW depends on your coordinate system properties (left/right handness). This approach is very commonly used in CG fur back face culling of polygons ...
if n.z is zero it means that your vectors/lines are either parallel or at lest one of them is zero.
I think these might interest you:
draw outline for some connected lines
How can I create an internal spiral for a polygon?
Also in 2D you do not need atan2 to get perpendicular vector... You can do instead this:
u = (x,y)
v = (-y,x)
w = (x,-y)
so u is any 2D vector and v,w are the 2 possible perpendicular vectors to u in 2D. they are the result of:
cross((x,y,0),(0,0,1))
cross((0,0,1),(x,y,0))
Question:
I need to calculate intersection shape (purple) of plane defined by Ax + By + Cz + D = 0 and frustum defined by 4 rays emitting from corners of rectangle (red arrows). The result shoud be quadrilateral (4 points) and important requirement is that result shape must be in plane's local space. Plane is created with transformation matrix T (planes' normal is vec3(0, 0, 1) in T's space).
Explanation:
This is perspective form of my rectangle projection to another space (transformation / matrix / node). I am able to calculate intersection shape of any rectangle without perspective rays (all rays are parallel) by plane-line intersection algorithm (pseudocode):
Definitions:
// Plane defined by normal (A, B, C) and D
struct Plane { vec3 n; float d; };
// Line defined by 2 points
struct Line { vec3 a, b; };
Intersection:
vec3 PlaneLineIntersection(Plane plane, Line line) {
vec3 ba = normalize(line.b, line.a);
float dotA = dot(plane.n, l.a);
float dotBA = dot(plane.n, ba);
float t = (plane.d - dotA) / dotBA;
return line.a + ba * t;
}
Perspective form comes with some problems, because some of rays could be parallel with plane (intersection point is in infinite) or final shape is self-intersecting. Its works in some cases, but it's not enough for arbitary transformation. How to get correct intersection part of plane wtih perspective?
Simply, I need to get visible part of arbitary plane by arbitary perspective "camera".
Thank you for suggestions.
Intersection between a plane (one Ax+By+Cx+D equation) and a line (two planes equations) is a matter of solving the 3x3 matrix for x,y,z.
Doing all calculations on T-space (origin is at the top of the pyramid) is easier as some A,B,C are 0.
What I don't know if you are aware of is that perspective is a kind of projection that distorts the z ("depth", far from the origin). So if the plane that contains the rectangle is not perpendicular to the axis of the fustrum (z-axis) then it's not a rectangle when projected into the plane, but a trapezoid.
Anyhow, using the projection perspective matrix you can get projected coordinates for the four rectangle corners.
To tell if a point is in one side of a plane or in the other just put the point coordinates in the plane equation and get the sign, as shown here
Your question seems inherently mathematic so excuse my mathematical solution on StackOverflow. If your four arrows emit from a single point and the formed side planes share a common angle, then you are looking for a solution to the frustum projection problem. Your requirements simplify the problem quite a bit because you define the plane with a normal, not two bounded vectors, thus if you agree to the definitions...
then I can provide you with the mathematical solution here (Internet Explorer .mht file, possibly requiring modern Windows OS). If you are thinking about an actual implementation then I can only direct you to a very similar frustum projection implementation that I have implemented/uploaded here (Lua): https://github.com/quiret/mta_lua_3d_math
The roadmap for the implementation could be as follows: creation of condition container classes for all sub-problems (0 < k1*a1 + k2, etc) plus the and/or chains, writing algorithms for the comparisions across and-chains as well as normal-form creation, optimization of object construction/memory allocation. Since each check for frustum intersection requires just a fixed amount of algebraic objects you can implement an efficient cache.
I'm interested in a fast way to calculate the rotation-independent center of a simple, convex, (non-intersecting) 2D polygon.
The example below (on the left) shows the mean center (sum of all points divided by the total), and the desired result on the right.
Some options I've already considered.
bound-box center (depends on rotation, and ignores points based on their relation to the axis).
Straight skeleton - too slow to calculate.
I've found a way which works reasonably well, (weight the points by the edge-lengths) - but this means a square-root call for every edge - which I'd like to avoid.(Will post as an answer, even though I'm not entirely satisfied with it).
Note, I'm aware of this questions similarity with:What is the fastest way to find the "visual" center of an irregularly shaped polygon?
However having to handle convex polygons increases the complexity of the problem significantly.
The points of the polygon can be weighted by their edge length which compensates for un-even point distribution.
This works for convex polygons too but in that case the center point isn't guaranteed to be inside the polygon.
Psudo-code:
def poly_center(poly):
sum_center = (0, 0)
sum_weight = 0.0
for point in poly:
weight = ((point - point.next).length +
(point - point.prev).length)
sum_center += point * weight
sum_weight += weight
return sum_center / sum_weight
Note, we can pre-calculate all edge lengths to halve the number of length calculations, or reuse the previous edge-length for half+1 length calculations. This is just written as an example to show the logic.
Including this answer for completeness since its the best method I've found so far.
There is no much better way than the accumulation of coordinates weighted by the edge length, which indeed takes N square roots.
If you accept an approximation, it is possible to skip some of the vertices by curve simplification, as follows:
decide of a deviation tolerance;
start from vertex 0 and jump to vertex M (say M=N/2);
check if the deviation along the polyline from 0 to M exceeds the tolerance (for this, compute the height of the triangle formed by the vertices 0, M/2, M);
if the deviation is exceeded, repeat recursively with 0, M/4, M/2 and M/2, 3M/4, M;
if the deviation is not exceeded, assume that the shape is straight between 0 and M.
continue until the end of the polygon.
Where the points are dense (like the left edge on your example), you should get some speedup.
I think its easiest to do something with the center of masses of the delaunay triangulation of the polygon points. i.e.
def _centroid_poly(poly):
T = spatial.Delaunay(poly).simplices
n = T.shape[0]
W = np.zeros(n)
C = 0
for m in range(n):
sp = poly[T[m,:],:]
W[m] = spatial.ConvexHull(sp).volume
C += W[m] +np.mean(sp, axis = 0)
return C / np.sum(W)
This works well for me!
I'm trying to find the best way to calculate this. On a 2D plane I have fixed points all with an instantaneous measurement value. The coordinates of these points is known. I want to predict the value of a movable point between these fixed points. The movable point coodinates will be known. So the distance betwwen the points is known as well.
This could be comparable to temperature readings or elevation on topography. I this case I'm wanting to predict ionospheric TEC of the mobile point from the fixed point measurements. The fixed point measurements are smoothed over time however I do not want to have to store previous values of the mobile point estimate in RAM.
Would some sort of gradient function be the way to go here?
This is the same algorithm for interpolating the height of a point from a triangle.
In your case you don't have z values for heights, but some other float value for each triangle vertex, but it's the same concept, still 3D points.
Where you have 3D triangle points p, q, r and test point pt, then pseudo code from the above mathgem is something like this:
Vector3 v1 = q - p;
Vector3 v2 = r - p;
Vector3 n = v1.CrossProduct(v2);
if n.z is not zero
return ((n.x * (pt.x - p.x) + n.y * (pt.y - p.y)) / -n.z) + p.z
As you indicate in your comment to #Phpdevpad, you do have 3 fixed points so this will work.
You can try contour plots especially contour lines. Simply use a delaunay triangulation of the points and a linear transformation along the edges. You can try my PHP implementations https://contourplot.codeplex.com for geographic maps. Another algorithm is conrec algorithm from Paul Bourke.
I am trying to generate a certain amount of random uniform points inside a rectangle (I know the pair of coordinates for each corner).
Let our rectangle be
ABCD
My idea is:
Divide the rectangle into two triangles by the AC diagonal. Find the slope and the intercept of the diagonal.
Then, generate two random numbers from [0,1] interval, let them be a,b.
Evaluate x = aAB and y = bAD (AB, AD, distances). If A is not (0,0), then we can add to x and y A's coordinates.
Now we have a point (x,y). If it is not in the lower triangle (ABC), skip to the next step.
Else, add the point to our plot and also add the symmetric of (x,y) vs. the AC diagonal so that we can fill the upper triangle (ADC) too.
I have implemented this, but I highly doubt that the points are uniformly generated (judging from the plot). How should I modify my algorithm? I guess that the issue is related to how I pick the triangle and the symmetric thing.
Why not just generate x=random([A.x, B.x]) and y=random([B.y, C.y]) and put them together as (x,y)? A n-dimensional uniform distribution is simply the product of the n uniform distributions of the components.
This is referred to as point picking and other similar terms. You seem to be on the right track in that the points should come from the uniform distribution. Your plot looks reasonably random to me.
What are you doing with upper and lower triangles? They seem unnecessary and would certainly make things less random. Is this some form variance reduction along the lines of antithetic variates? If #Paddy3118 is right an you really just need random-ish points to fill the space, then you should look into low-discrepancy sequences. The Halton sequence generalizes the van der Corput sequence to multiple dimensions. If you have Matlab's Statistics Toolbox check out the sobolset and haltonset functions or qrandstream and qrand.
This approach (from #Xipan Xiao & #bonanova.) should be reproducible in many languages. MATLAB code below.
a = 0; b = 1;
n = 2000;
X = a + (b-a)*rand(n,1);
Y = a + (b-a)*rand(n,1);
Newer versions of MATLAB can make use of the makedist and random commands.
pdX = makedist('Uniform',a,b);
pdY = makedist('Uniform',a,b);
X = random(pdX,n,1);
Y = random(pdY,n,1);
The points (X,Y) will be uniformly in the rectangle with corner points (a,a), (a,b), (b,a), (b,b).
For verification, we can observe the marginal distributions for X and Y and see that those are uniform as well.
scatterhist(X,Y,'Marker','.','Direction','out')
Update: Using haltonset (suggested by #horchler)
p = haltonset(2);
XY = net(p,2000);
scatterhist(XY(:,1),XY(:,2),'Marker','.','Direction','out')
If you are after a more uniform density then you might consider a Van der Corput sequence. The sequence finds use in Monte-Carlo simulations and Wolfram Mathworld calls them a quasi-random sequence.
Generate two random numbers in the interval [0,1] translate and scale them to your rectangle as x and y.
There is just my thought, i haven't test with code yet.
1.Divide the rectangle to grid with N x M cells, depends on variable density.
2.loop through the cell and pick a random point in the cell until it reached your target point quantity.