Cassandra Query by Date - cassandra

How do I update a colum based on a greater or less then date in Casandra?
Example:
update asset_by_file_path set received = true where file_path = '/file/path' and time_received = '2015-07-24 02:14:34-0600';
This works fine. But I would like to do it for all columns that match this file path and time_received is greater then 2015-07-24 02:14:34-0600.
time_received is date, clustering column.
file_path is string, partition key

Cassandra's WHERE clause has many limitations and if you have several clustering columns things could not work as you expect, at least there are limitations for >, >=, <, <= etc operators. Here is a quite fresh blog post from Databrix about WHERE clause nuances, it also covers some upcoming features.

I think UPDATE can only modify a single row at a time, so I don't see a way to update multiple rows on the server side in CQL.
A couple possible programmatic approaches:
Do a range query to return all the rows you want to update, and then on the client side, update each row returned. Since they would all be for the same partition, you could issue the updates as batched statements.
If you have Spark available, you could read all the rows you want to update into an RDD using a range query. Then do a transformation on the RDD to set the received value to true, then save the RDD back to Cassandra.

Related

Order of rows shown changes on selection of columns from dependent pyspark dataframe

Why does the order of rows displayed differ, when I take a subset of the dataframe columns to display, via show?
Here is the original dataframe:
Here dates are in the given order, as you can see, via show.
Now the order of rows displayed via show changes when I select a subset of predict_df by method of column selection for a new dataframe.
Because of Spark dataframe itself is unordered. It's due to parallel processing principles wich Spark uses. Different records may be located in different files (and on different nodes) and different executors may read the data in different time and in different sequence.
So You have to excplicitly specify order in Spark action using orderBy (or sort) method. E.g.:
df.orderBy('date').show()
In this case result will be ordered by date column and would be more predictible. But, if many records have equal date value then within those date subset records also would be unordered. So in this case, in order to obtain strongly ordered data, we have to perform orderBy on set of columns. And values in all rows of those set of columns must be unique. E.g.:
df.orderBy(col("date").asc, col("other_column").desc)
In general unordered datasets is a normal case for data processing systems. Even "traditional" DBMS like PostgeSQL or MS SQL Server in general return unordered records and we have to explicitly use ORDER BY clause in SELECT statement. And even if sometime we may see the same results of one query it isn't guarenteed by DBMS that by another execution result will be the same also. Especially if data reading is performed on a large amout of data.
The situation occurs because the show is an action that is called twice.
As no .cache is applied the whole cycle starts again from the start. Moreover, I tried this a few times and got the same order and not the same order as the questioner observed. Processing is non-deterministic.
As soon as I used .cache, the same result was always gotten.
This means that there is ordering preserved over a narrow transformation on a dataframe, if caching has been applied, otherwise the 2nd action will invoke processing from the start again - the basics are evident here as well. And may be the bottom line is always do ordering explicitly - if it matters.
Like #Ihor Konovalenko and #mck mentioned, Sprk dataframe is unordered by its nature. Also, looks like your dataframe doesn’t have a reliable key to order, so one solution is using monotonically_increasing_id https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.functions.monotonically_increasing_id.html to create id and that will keep your dataframe always ordered. However if your dataframe is big, be aware this function might take some time to generate id for each row.

How does Apache spark structured streaming 2.3.0 let the sink know that a new row is an update of an existing row?

How does spark structured streaming let the sink know that a new row is an update of an existing row when run in an update mode? Does it look at all the values of all columns of the new row and an existing row for an equality match or does it compute some sort of hash?
Reading the documentation, we see some interesting information about update mode (bold formatting added by me):
Update Mode - Only the rows that were updated in the Result Table since the last trigger will be written to the external storage (available since Spark 2.1.1). Note that this is different from the Complete Mode in that this mode only outputs the rows that have changed since the last trigger. If the query doesn’t contain aggregations, it will be equivalent to Append mode.
So, to use update mode there needs to be some kind of aggregation otherwise all data will simply be added to the end of the result table. In turn, to use aggregation the data need to use one or more coulmns as a key. Since a key is needed it is easy to know if a row has been updated or not - simply compare the values with the previous iteration of the table (the key tells you which row to compare with). In aggregations that contains a groupby, the columns being grouped on are the keys.
Simple aggregations that return a single value will not require a key. However, since only a single value is returned it will update if that value is changed. An example here could be taking the sum of a column (without groupby).
The documentation contains a picture that gives a good understanding of this, see the "Model of the Quick Example" from the link above.

Cassandra: Insert multiple rows containing different data with the same set of primary key values

Say I have 2 rows of time-series data that have exactly the same timestamp etc for the primary keys. The only difference is the rest of the data are different.
So if set 1 has [timestamp, other keys...], value_col1, value_col2, then the value_col1 and value_col2 for set 2 will have different values than set 1.
Now if I put those sets into one batch to be inserted or very quickly using seperate inserts queries, the result I see in the database can be somewhat inconsistent: it can be that value_col1 from set 1 is combined with that of value_col2 in the final row.
It took me the whole evening to find out this is actually a bug (or maybe intended behaviour...) I have my workaround now using a slightly increased timestamp for set 2. The sympton won't be noticed in many cases, but in my case where col1 is the partial decoding key for col2, then I have a problem!
Does anyone have the same problem or knows where the problem actually lies?
I'm using cassandra-node drive on nodejs 5.0.0 with cassandra 2.0.14.
You should define your in Cassandra schema to avoid race conditions.
If you provide different data with same partition and clustering keys in the same instant, you will not be able to define which should be preserved.
If you want the 2 rows to be preserved, you should use a uuid or timeuuid datatypes.
See more information in the nodejs driver docs: http://docs.datastax.com/en/developer/nodejs-driver/2.2/nodejs-driver/reference/uuids-timeuuids.html

Is there a way to filter a counter column in cassandra?

I have been unable to decipher on how to proceed with a use case....
I want to keep count of some items, and query the data such that
counter_value < threshold value
Now in cassandra, indexes cannot be made on counters, that is something that is a problem, is there a workaround modelling which can be done to accomplish something similar??
thanks
You have partially answered your own question, saying what you want to query. So lets say first model the data the way you will query it later.
If you want to query through counter value, it cannot be a counter type. As it doesn't complies the two conditions needed to query the data
Cannot be part of index
Cannot be part of the partition key
Counters are the most efficient way to do fast writes in Cassandra for a counter use of case. But unfortunately they cannot be part of where clause, because of above two restrictions.
So if you want to solve the problem using Cassandra, change the type to a long in Cassandra, make it the clustering key or make an index over that column. In any case this will slower your writes and increase the latency of every operation of updating counter value, as you will be using the anti parttern of read-before-write.
I would recommend to use the index.
Last but not least, I would consider using a SQL database for this problem.
Depending on what you're trying to return as a result, you might be able to do something with a user defined aggregate function. You can put arbitrary code in the user defined function to filter based on the value of the counter.
See some examples here and here.
Other approaches would be to filter the returned rows on the client side, or to load the data into Spark and filter the rows in Spark.

get_range_slices and CQL query handling, need for ALLOW FILTERING

I have a following CQL table (a bit simplified for clarity):
CREATE TABLE test_table (
user uuid,
app_id ascii,
domain_id ascii,
props map<ascii,blob>,
PRIMARY KEY ((user), app_id, domain_id)
)
The idea is that this table would contain many users (i.e. rows, say, dozens of millions). For each user there would be a few domains of interest and there would be a few apps per domain. And for each user/domain/app there would be a small set of properties.
I need to scan this entire table and load its contents in chunks for given app_id and domain_id. My idea was to use the TOKEN function to be able to read the whole data set in several iterations. So, something like this:
SELECT props FROM test_table WHERE app_id='myapp1'
AND domain_id='mydomain1'
AND TOKEN(user) > -9223372036854775808
AND TOKEN(user) < 9223372036854775807;
I was assuming that this query would be efficient because I specify the range of the row keys and by specifying the values of the clustering keys I effectively specify the column range. But when I try to run this query I get the error message "Bad Request: Cannot execute this query as it might involve data filtering and thus may have unpredictable performance. If you want to execute this query despite the performance unpredictability, use ALLOW FILTERING".
I have limited experience with Cassandra and I assumed that this sort of query would map into get_range_slices() call, which accepts the slice predicate (i.e. the range of columns defined by my app_id/domain_id values) and the key range defined by my token range. It seems either I misunderstand how this sort of query is handled or maybe I misunderstand about the efficiency of get_range_slices() call.
To be more specific, my questions are:
- if this data model does make sense for the kind of query I have in mind
- if this query is expected to be efficient
- if it is efficient, then why am I getting this error message asking me to ALLOW FILTERING
My only guess about the last one was that the rows that do not have the given combination of app_id/domain_id would need to be skipped from the result.
--- update ----
Thank for all the comments. I have been doing more research on this and there is still something that I do not fully understand.
In the given structure what I am trying to get is like a rectangular area from my data set (assuming that all rows have the same columns). Where top and the bottom of the rectangle is determined by the token range (range) and the left/right sides are defined as column range (slice). So, this should naturally transform into get_range_slices request. My understanding (correct me if I am wrong) that the reason why CQL requires me to put ALLOW FILTERING clause is because there will be rows that do not contain the columns I am looking for, so they will have to be skipped. And since nobody knows if it will have to skip every second row or first million rows before finding one that fits my criteria (in the given range) - this is what causes the unpredictable latency and possibly even timeout. Am I right? I have tried to write a test that does the same kind of query but using low-level Astyanax API (over the same table, I had to read the data generated with CQL, it turned out to be quite simple) and this test does work - except that it returns keys with no columns where the row does not contain the slice of columns I am asking for. Of course I had to implement some kind of simple paging based on the starting token and limit to fetch the data in small chunks.
Now I am wondering - again, considering that I would need to deal with dozens of millions of users: would it be better to partially "rotate" this table and organize it in something like this:
Row key: domain_id + app_id + partition no (something like hash(user) mod X)
Clustering key: column partition no (something like hash(user) >> 16 mod Y) + user
For the "column partition no"...I am not sure if it is really needed. I assume that if I go with this model I will have relatively small number of rows (X=1000..10000) for each domain + app combination. This will allow me to query the individual partitions, even in parallel if I want to. But (assuming the user is random UUID) for 100M users it will result in dozens or hundreds of thousands of columns per row. Is it a good idea to read one such a row in one request? It should created some memory pressure for Cassandra, I am sure. So maybe reading them in groups (say, Y=10..100) would be better?
I realize that what I am trying to do is not what Cassandra does well - reading "all" or large subset of CF data in chunks that can be pre-calculated (like token range or partition keys) for parallel fetching from different hosts. But I am trying to find a pattern that is the most efficient for such a use case.
By the way, the query like "select * from ... where TOKEN(user)>X and TOKEN(user)
Short answer
This warning means that Cassandra would have to read non-indexed data and filter out the rows that don't satisfy the criteria. If you add ALLOW FILTERING to the end of query, it will work, however it will scan a lot of data:
SELECT props FROM test_table
WHERE app_id='myapp1'
AND domain_id='mydomain1'
AND TOKEN(user) > -9223372036854775808
AND TOKEN(user) < 9223372036854775807
ALLOW FILTERING;
Longer explanation
In your example primary key consists of two parts: user is used as partition key, and <app_id, domain_id> form remaining part. Rows for different users are distributed across the cluster, each node responsible for specific range of token ring.
Rows on a single node are sorted by the hash of partition key (token(user) in your example). Different rows for single user are stored on a single node, sorted by <app_id, domain_id> tuple.
So, the primary key forms a tree-like structure. Partition key adds one level of hierarchy, and each remaining field of a primary key adds another one. By default, Cassandra processes only the queries that return all rows from the continuos range of the tree (or several ranges if you use key in (...) construct). If Cassandra should filter out some rows, ALLOW FILTERING must be specified.
Example queries that don't require ALLOW FILTERING:
SELECT * FROM test_table
WHERE user = 'user1';
//OK, returns all rows for a single partition key
SELECT * FROM test_table
WHERE TOKEN(user) > -9223372036854775808
AND TOKEN(user) < 9223372036854775807;
//OK, returns all rows for a continuos range of the token ring
SELECT * FROM test_table
WHERE user = 'user1'
AND app_id='myapp1';
//OK, the rows for specific user/app combination
//are stored together, sorted by domain_id field
SELECT * FROM test_table
WHERE user = 'user1'
AND app_id > 'abc' AND app_id < 'xyz';
//OK, since rows for a single user are sorted by app
Example queries that do require ALLOW FILTERING:
SELECT props FROM test_table
WHERE app_id='myapp1';
//Must scan all the cluster for rows,
//but return only those with specific app_id
SELECT props FROM test_table
WHERE user='user1'
AND domain_id='mydomain1';
//Must scan all rows having user='user1' (all app_ids),
//but return only those having specific domain
SELECT props FROM test_table
WHERE user='user1'
AND app_id > 'abc' AND app_id < 'xyz'
AND domain_id='mydomain1';
//Must scan the range of rows satisfying <user, app_id> condition,
//but return only those having specific domain
What to do?
In Cassandra it's not possible to create a secondary index on the part of the primary key. There are few options, each having its pros and cons:
Add a separate table that has primary key ((app_id), domain_id, user) and duplicate the necessary data in two tables. It will allow you to query necessary data for a specific app_id or <app_id, domain_id> combination. If you need to query specific domain and all apps - third table is necessary. This approach is called materialized views
Use some sort of parallel processing (hadoop, spark, etc) to perform necessary calculations for all app/domain combinations. Since Cassandra needs to read all the data anyway, there probably won't be much difference from a single pair. If the result for other pairs might be cached for later use, it will probably save some time.
Just use ALLOW FILTERING if query performance is acceptable for your needs. Dozens of millions partition keys is probably not too much for Cassandra.
Presuming you are using the Murmur3Partitioner (which is the right choice), you do not want to run range queries on the row key. This key is hashed to determine which node holds the row, and is therefore not stored in sorted order. Doing this kind of range query would therefore require a full scan.
If you want to do this query, you should store some known value as a sentinel for your row key, such that you can query for equality rather than range. From your data it appears that either app_id or domain_id would be a good choice, since it sounds like you always know these values when performing your query.

Resources