Having FPGA to output sound on "line out" pin using verilog - audio

I am trying to write a verilog code for FPGA which will output sound from the embedded "line out" pin. I use Quartus II and Altera DE1.
I am new to hardware programming, therefore it just takes too much time for me to catch up with basics. Apparently I need to initialize the wolfson chip and need to write something to communicate with it, as discussed here:
http://www.alteraforum.com/forum/showthread.php?t=6005
It uses wolfson WM8731 codec, manual is in here:
http://www.rockbox.org/wiki/pub/Main/DataSheets/WM8731_8731L.pdf
and an example I found but couldnt figured out how to use it is in here:
https://code.google.com/p/vector06cc/wiki/SoundCodec
I have found bunch of examples about how to generate sounds using GPIO pins, but barely anything about the usage of WM8731. I would really appreciate any guidance or experience you might share.

Assuming you're using Nios II and either SOPC Builder or Qsys, the Altera University Program offers an IP core to control the Audio CODEC on the DE-Series boards.
If you don't already have it, you can download it here (at the bottom of the page, listed as University Program Installer): https://www.altera.com/support/training/university/materials-ip-cores.html
Once you install it, check the <altera-directory>/University_Program\NiosII_Computer_Systems\DE1\DE1_Media_Computer directory. app_software and app_software_HAL both give example methods to write to the audio output (using C code running on the Nios II), and the verilog or vhdl folder show example systems on connecting the core to a NIOS II using your preferred HDL.
The core itself can be found in <altera-directory>\ip\University_Program\Audio_Video. See also ftp://ftp.altera.com/up/pub/Altera_Material/14.1/University_Program_IP_Cores/Audio_Video/Audio.pdf for some (potentially) helpful reading/reference.
Addendum:
All of the FPGA inputs and outputs use the "Digital Audio Interface" of the WM8731 chip. The pins available on the FPGA are as follows:
PIN_A6 : AUD_ADCLRCK
PIN_B6 : AUD_ADCDAT
PIN_A5 : AUD_DACLRCK
PIN_B5 : AUD_DACDAT
PIN_A4 : AUD_BCLK
PIN_B4 : AUD_XCK (MCLK on WM8731)
Output is sent to the CODEC on the AUD_DACDAT pin.
The chip is configured using the I2C_SDAT and I2C_SCLK pins on I2C address 0x34 for read, and 0x35 for write.
No other pins are available to the FPGA - some are used for external connections (like the mike or line-in), or are not connected at all.
For a full list of pin assignments for the DE1 (which can be directly imported to Quartus) see: ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Boards/DE1/DE1.qsf

Related

How to set chip select in SPI programming for multipleslaves ? (struct spi_ioc_transfer)

Maybe I am asking the wrong question actually but I am just making my first steps in the embedded world. So I am sorry if the question is somehow stupid.
I am trying to program a software for 9DOF IMU in c++ and linux environment.
As far as I understood the SPI, the SS pin has to be low active in order for a transmission to occur. I have seen multiple reading or writing bytes function examples and all using the struct spi_ioc_transfer but they were all single slave examples and there is no mention about setting or configuring the SS in the code. Also When I check the structre of spi_ioc_transfer there is the cs_change however, how does it know which cs we are dealing with from the beginning ?
The chip select (CS or SS) to use is determined by which device node you open.
To talk to a SPI chip with the Linux spidev driver, you open a device such as /dev/spidev0.1. The numbers in the device node file name refer to the bus and chip select, respectively — in this example it would be the first bus (0) and the second CS (1). If you want to talk to devices on different chip-selects, you have to open different device nodes and do ioctls on the appropriate one.

rfid-rc522 Tag is not read

I am using the instructions of https://pimylifeup.com/raspberry-pi-rfid-rc522/ to learn how to read my rfid-rc522.
I installed all the things needed, and cloned from git all the files. I connected accordingly and double checked the wire.
The code in Write.py is
#!/usr/bin/env python
import RPi.GPIO as GPIO
import SimpleMFRC522
reader = SimpleMFRC522.SimpleMFRC522()
try:
text = raw_input('New data:')
print("Now place your tag to write")
reader.write(text)
print("Written")
finally:
GPIO.cleanup()
When I run it- The result stops after "Now place your tag to write" and nothing happens when I place my tag. Any help please? What's wrong here? The module gives red light meaning it is connected. Is it really connected? How do I know? Please help.
Edit: My title and tags were wrong in this question due to already saved data. I edited. :)
It can be multiple reasons why your reader is not retrieving any data:
The RFID cards that you are providing to the reader are not supported by the ISO 14443: Mifare Classic, 4K. (Some DesFire, etc...) are the cards you want to try. Source: https://en.wikipedia.org/wiki/ISO/IEC_14443
The MFRC522 is not receiving enough input voltage. Try to increase from 3.3V to 4V. I have tried with 5V months and the reader is still running perfectly, but be cautious. The safe range in NXP is from 2.5V to 3.6V. Source: https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf
The library you are using does not support IRQ (Interruption Request). This means the process of reading UIDs is high CPU consuming and low in performance. Try to use this popular library which supports interruptions: https://github.com/ondryaso/pi-rc522 . You will need to connect another wire from the IRQ pin in the MFRC522 to one GPIO pin in the Raspberry that is free and supports reading/writing operations.
Check if SPI interfaces are enable in Raspbian. Open a terminal and run:
ls -l /dev/spi
Lastly, it could be that your reader is broken. Some chinese versions do not work as they should do. Maybe you should buy another one and try more luck.
I suppose you have connected all cables in the correct way between the MFRC522 and the Raspberry Pi. Check that again.

How to simulate the RISCV Rocket chip

According to the riscv-gcc compiler we are generated the binary file. This binary file data are feeding to rocket chip through this signals.
io_host_in_valid, input [15:0] io_host_in_bits
Here io_host_in_bits is 16-bit, so we are driving the 2-times for each instruction data in little-Endian mode.
We are not getting any response from Rocket core (HTIF).
How to simulate the Rocket core and if it is possible to simulate in Xilinx Vivado 2014 as well as debug the design.
Can any one help me about this
Regards,
Santhosh Kumar.
For more information on the Rocket Chip infrastructure, I recommend checking out the slides and videos from the first RISC-V Bootcamp.
The Rocket Chip can be simulated/debugged in two different ways: C simulator and Verilog. For information on using these modes, please consult the Rocket Chip README.
Yunsup's response on the riscv-hw mailing list:
I would take a look at http://riscv.org/tutorial-hpca2015/riscv-rocket-chip-generator-tutorial-hpca2015.pdf for an overview of interfaces and the FPGA setup.
Here’s a link to our test bench we use to test the rocket chip: https://github.com/ucb-bar/rocket-chip/blob/master/vsrc/rocketTestHarness.v. I would take a look at the htif_tick function, where the implementation can be found here at https://github.com/ucb-bar/rocket-chip/blob/master/csrc/vcs_main.cc, which calls a method on htif_emulator_t (https://github.com/ucb-bar/rocket-chip/blob/master/csrc/htif_emulator.h), which is inherited from htif_pthread_t (https://github.com/riscv/riscv-fesvr/blob/master/fesvr/htif_pthread.cc). You should also take a look at https://github.com/riscv/riscv-fesvr/blob/master/fesvr/htif.cc.
The host interface (HostIO) doesn’t take instructions directly, it’s a port for the front-end server (https://github.com/riscv/riscv-fesvr/tree/master/fesvr) to access target memory and the core’s control and status registers (CSR).

PCM voice data on serial port to sound device conversion in linux

I have a telephony modem which gives voice to my interfaced application via a serial USB ttyUSB0 in 16bit PCM 8000hz. I am able to capture this data and play with audacity. I want this port to be detected as a sound device in linux (I am on ubuntu). Is it possible? Are there any other options?
I'm guessing you are using a huawei 3G modem or something similar which gives ttyUSB1 for audio. Make sure you have the serial driver binded to it. Then simply pass the port itself as a "file" for input for any program of your choice.You need root access for that.You figured out the audio settings so it must be enough.I have voice calling working in UBUNTU 11.10 with Huawei. So let me know if i can help any further.
Ok, I see it's very old question but answers helped me to get a right direction so I decided to help others.
The one way to achieve (in addition to below) what are you are
looking for is to write dynamic kernel module.
Have it register as a sound device, and check that it has a GSM
module present (which module is it exactly can be recognized in
dmesg, lsmod, or output).
Then establish communication between user space representation as a
sound card and serial usb module.
The other way is to get module that you recognized by dmesg, lsmod and extend its functionality as a sound card.
All are tricky tasks because:
in the first case you have to resolve intermodule communication at the kernel level...... which is, lets say, a little hard even if programmer has a right background in subject.
the second case is hard in that you have to deal with:
USB stack (which is little unpleasant for human beings) and
sound subsystem (which is a little burdensome because of historical issues).
Without being an experienced kernel programmer there are small chances to succeed.

ARM LPC1751 pins configured as I/O

How can I configure one pin for input and another for the output?
If I am not wrong this could be done with GPIO registers that controlls device pins that are not connected to peripherical functions.
Look in UM10360.PDF, Chapter 9: GPIO. There you can find the description for the FIOxDIR direction registers, as well as the reigisters for querying, setting and clearing GPIO pins.
I also strongly recommend looking at the CMSIS Standard Peripherial Driver Library that NXP offers for 175x/176x, look in microcontroller support documents. Edit: There are lots of sample code in this Library.
https://github.com/dwelch67
I have a number of lpc based examples. You are looking for the IODIR register, depending on the port and flavor of LPC, there are now what they call fast I/O registers. a one in a bit location means that pin is an output, a zero an input.

Resources