How do I make a list of substrings? - string

I am trying to make a list of all substrings where each substring has one less element of the originial string.
e.g "1234" would result in ["1234","123","12","1"]
I would like to achieve this only using prelude (no import) so cant use subsequences.
I am new to Haskell, and I know some of the problems with my code but don't currently know how to fix them.
slist :: String -> [String]
slist (x:xs) = (take (length (x:xs)) (x:xs)) ++ slist xs
How can I do this recursively using
Edit: would like to this by using init recursively

slist :: String -> [String]
slist [] = []
-- slist xs = [xs] ++ (slist $ init xs)
slist xs = xs : (slist $ init xs)
main = do
print $ slist "1234"

Here's a very lazy version suitable for working on infinite lists. Each element of each resulting list after the first only requires O(1) amortized time to compute it no matter how far into the list we look.
The general idea is: for each length n we intend to drop off the end we split the list into a queue of items of length n and the remainder of the list. To yield results, we first check there's another item in the list that can take a place in the queue, then yield the first item in the queue. When we reach the end of the list we discard the remaining items from the queue.
import Data.Sequence (Seq, empty, fromList, ViewL (..), viewl, (|>))
starts :: [a] -> [[a]]
starts = map (uncurry shiftThrough) . splits
shiftThrough :: Seq a -> [a] -> [a]
shiftThrough queue [] = []
shiftThrough queue (x:xs) = q1:shiftThrough qs xs
where
(q1 :< qs) = viewl (queue |> x)
splits finds all the initial sequences of a list together with the tailing list.
splits :: [a] -> [(Seq a, [a])]
splits = go empty
where
go s [] = []
go s (x:xs) = (s,x:xs):go (s |> x) xs
We can write dropping from the end of a list in terms of the same strategy.
dropEnd :: Int -> [a] -> [a]
dropEnd n = uncurry (shiftThrough . fromList) . splitAt n
These use Data.Sequence's amortized O(n) construction of a sequence fromList, O(1) appending to the end of sequence with |> and O(1) examining the start of a sequence with viewl.
This is fast enough to query things like (starts [1..]) !! 80000 very quickly and (starts [1..]) !! 8000000 in a few seconds.
Look ma, no imports
A simple purely functional implementation of a queue is a pair of lists, one containing the things to output next in order and one containing the most recent things added. Whenever something is added it's added to the beginning of the added list. When something is needed the item is removed from the beginning of the next list. When there are no more items left to remove from the next list it is replaced by the added list in reverse order, and the added list is set to []. This has amortized O(1) running time since each item will be added once, removed once, and reversed once, however many of the reversals will happen all at once.
delay uses the queue logic described above to implement the same thing as shiftThrough from the previous section. xs is the list of things that were recently added and ys is the list of things to use next.
delay :: [a] -> [a] -> [a]
delay ys = traverse step ([],ys)
where
step (xs, ys) x = step' (x:xs) ys
step' xs [] = step' [] (reverse xs)
step' xs (y:ys) = (y, (xs, ys))
traverse is almost a scan
traverse :: (s -> a -> (b, s)) -> s -> [a] -> [b]
traverse f = go
where
go _ [] = []
go s (x:xs) = y : go s' xs
where (y, s') = f s x
We can define starts in terms of delay and another version of splits that returns lists.
starts :: [a] -> [[a]]
starts = map (uncurry delay) . splits
splits :: [a] -> [([a], [a])]
splits = go []
where
go s [] = []
go s (x:xs) = (reverse s, x:xs):go (x:s) xs
This has very similar performance to the implementation using Seq.

Here's a somewhat convoluted version:
slist xs = go (zip (repeat xs) [lenxs, lenxs - 1..1])
where lenxs = length xs
go [] = []
go (x:xs) = (take (snd x) (fst x)) : go xs
main = do
print $ slist "1234"

Updated answer to list all possible substrings (not just starting from the root).
slist :: [t] -> [[t]]
slist [] = []
slist xs = xs : (slist $ init xs ) # Taken from Pratik Deoghare's post
all_substrings:: [t] -> [[t]]
all_substrings (x:[]) = [[x]]
all_substrings (x:xs) = slist z ++ all_substrings xs
where z = x:xs
λ> all_substrings "1234"
["1234","123","12","1","234","23","2","34","3","4"]

Related

More efficient powerset algorithm haskell

I Have a powerset function which creates a list [[a]] but the largest [a] is worked out first, meaning the whole algorithm has to run before I can get the smaller values.
I need a function which returns a powerset, in ascending order, so I could take the first n values of the function and the whole algorithm would not need to run.
Current simple algorithm
powerset :: [a] -> [[a]]
powerset [] = [[]]
powerset (x:xs) = [x:ps | ps <- powerset xs] ++ powerset xs
I don't understand what you mean by ascending order, but consider this solution:
powerset' :: [a] -> [[a]]
powerset' = loop [[]]
where
loop :: [[a]] -> [a] -> [[a]]
loop acc [] = acc
loop acc (x:xs) = loop (acc ++ fmap (\e -> e ++ [x]) acc) xs
We start with the powerset of the empty list, which is [[]], and expand it for each new element we encounter in the input list. The expansion is by appending the new element in each sublist we already emitted.
It requires that we append elements to the sublists exponentially many times, so I also considered using Data.DList from the dlist package that provides an efficient snoc operator that appends new elements to the end of the list:
import Data.DList
powerset :: [a] -> [[a]]
powerset xs = toList <$> loop [empty] xs
where
loop :: [DList a] -> [a] -> [DList a]
loop acc [] = acc
loop acc (y:ys) = loop (acc ++ fmap (`snoc` y) acc) ys
In my (rough) experiments, though, the first solution uses way less memory in the REPL and thus finishes faster for bigger input lists.
In both cases, this is what you get at the end:
$> powerset [1,2,3]
[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
$> powerset_original [1,2,3]
[[1],[1,2],[1,3],[1,2,3],[],[2],[3],[2,3]]

Split a list into non-empty sub-lists in Haskell

I have to split the given list into non-empty sub-lists each of which
is either in strictly ascending order, in strictly descending order, or contains all equal elements. For example, [5,6,7,2,1,1,1] should become [[5,6,7],[2,1],[1,1]].
Here is what I have done so far:
splitSort :: Ord a => [a] -> [[a]]
splitSort ns = foldr k [] ns
where
k a [] = [[a]]
k a ns'#(y:ys) | a <= head y = (a:y):ys
| otherwise = [a]:ns'
I think I am quite close but when I use it it outputs [[5,6,7],[2],[1,1,1]] instead of [[5,6,7],[2,1],[1,1]].
Here is a kinda ugly solution, with three reverse in one line of code :).
addElement :: Ord a => a -> [[a]] -> [[a]]
addElement a [] = [[a]]
addElement a (x:xss) = case x of
(x1:x2:xs)
| any (check a x1 x2) [(==),(<),(>)] -> (a:x1:x2:xs):xss
| otherwise -> [a]:(x:xss)
_ -> (a:x):xss
where
check x1 x2 x3 op = (x1 `op` x2) && (x2 `op` x3)
splitSort xs = reverse $ map reverse $ foldr addElement [] (reverse xs)
You can possibly get rid of all the reversing if you modify addElement a bit.
EDIT:
Here is a less reversing version (even works for infinite lists):
splitSort2 [] = []
splitSort2 [x] = [[x]]
splitSort2 (x:y:xys) = (x:y:map snd here):splitSort2 (map snd later)
where
(here,later) = span ((==c) . uncurry compare) (zip (y:xys) xys)
c = compare x y
EDIT 2:
Finally, here is a solution based on a single decorating/undecorating, that avoids comparing any two values more than once and is probably a lot more efficient.
splitSort xs = go (decorate xs) where
decorate :: Ord a => [a] -> [(Ordering,a)]
decorate xs = zipWith (\x y -> (compare x y,y)) (undefined:xs) xs
go :: [(Ordering,a)] -> [[a]]
go ((_,x):(c,y):xys) = let (here, later) = span ((==c) . fst) xys in
(x : y : map snd here) : go later
go xs = map (return . snd) xs -- Deal with both base cases
Every ordered prefix is already in some order, and you don't care in which, as long as it is the longest:
import Data.List (group, unfoldr)
foo :: Ord t => [t] -> [[t]]
foo = unfoldr f
where
f [] = Nothing
f [x] = Just ([x], [])
f xs = Just $ splitAt (length g + 1) xs
where
(g : _) = group $ zipWith compare xs (tail xs)
length can be fused in to make the splitAt count in unary essentially, and thus not be as strict (unnecessarily, as Jonas Duregård rightly commented):
....
f xs = Just $ foldr c z g xs
where
(g : _) = group $ zipWith compare xs (tail xs)
c _ r (x:xs) = let { (a,b) = r xs } in (x:a, b)
z (x:xs) = ([x], xs)
The initial try turned out to be lengthy probably inefficient but i will keep it striked for the sake of integrity with the comments. You best just skip to the end for the answer.
Nice question... but turns out to be a little hard candy. My approach is in segments, those of each i will explain;
import Data.List (groupBy)
splitSort :: Ord a => [a] -> [[a]]
splitSort (x:xs) = (:) <$> (x :) . head <*> tail $ interim
where
pattern = zipWith compare <$> init <*> tail
tuples = zipWith (,) <$> tail <*> pattern
groups = groupBy (\p c -> snd p == snd c) . tuples $ (x:xs)
interim = groups >>= return . map fst
*Main> splitSort [5,6,7,2,1,1,1]
[[5,6,7],[2,1],[1,1]]
The pattern function (zipWith compare <$> init <*> tail) is of type Ord a => [a] -> [Ordering] when fed with [5,6,7,2,1,1,1] compares the init of it by the tail of it by zipWith. So the result would be [LT,LT,GT,GT,EQ,EQ]. This is the pattern we need.
The tuples function will take the tail of our list and will tuple up it's elements with the corresponding elements from the result of pattern. So we will end up with something like [(6,LT),(7,LT),(2,GT),(1,GT),(1,EQ),(1,EQ)].
The groups function utilizes Data.List.groupBy over the second items of the tuples and generates the required sublists such as [[(6,LT),(7,LT)],[(2,GT),(1,GT)],[(1,EQ),(1,EQ)]]
Interim is where we monadically get rid of the Ordering type values and tuples. The result of interim is [[6,7],[2,1],[1,1]].
Finally at the main function body (:) <$> (x :) . head <*> tail $ interim appends the first item of our list (x) to the sublist at head (it has to be there whatever the case) and gloriously present the solution.
Edit: So investigating the [0,1,0,1] resulting [[0,1],[0],[1]] problem that #Jonas Duregård discovered, we can conclude that in the result there shall be no sub lists with a length of 1 except for the last one when singled out. I mean for an input like [0,1,0,1,0,1,0] the above code produces [[0,1],[0],[1],[0],[1],[0]] while it should [[0,1],[0,1],[0,1],[0]]. So I believe adding a squeeze function at the very last stage should correct the logic.
import Data.List (groupBy)
splitSort :: Ord a => [a] -> [[a]]
splitSort [] = []
splitSort [x] = [[x]]
splitSort (x:xs) = squeeze $ (:) <$> (x :) . head <*> tail $ interim
where
pattern = zipWith compare <$> init <*> tail
tuples = zipWith (,) <$> tail <*> pattern
groups = groupBy (\p c -> snd p == snd c) $ tuples (x:xs)
interim = groups >>= return . map fst
squeeze [] = []
squeeze [y] = [y]
squeeze ([n]:[m]:ys) = [n,m] : squeeze ys
squeeze ([n]:(m1:m2:ms):ys) | compare n m1 == compare m1 m2 = (n:m1:m2:ms) : squeeze ys
| otherwise = [n] : (m1:m2:ms) : squeeze ys
squeeze (y:ys) = y : squeeze s
*Main> splitSort [0,1, 0, 1, 0, 1, 0]
[[0,1],[0,1],[0,1],[0]]
*Main> splitSort [5,6,7,2,1,1,1]
[[5,6,7],[2,1],[1,1]]
*Main> splitSort [0,0,1,0,-1]
[[0,0],[1,0,-1]]
Yes; as you will also agree the code has turned out to be a little too lengthy and possibly not so efficient.
The Answer: I have to trust the back of my head when it keeps telling me i am not on the right track. Sometimes, like in this case, the problem reduces down to a single if then else instruction, much simpler than i had initially anticipated.
runner :: Ord a => Maybe Ordering -> [a] -> [[a]]
runner _ [] = []
runner _ [p] = [[p]]
runner mo (p:q:rs) = let mo' = Just (compare p q)
(s:ss) = runner mo' (q:rs)
in if mo == mo' || mo == Nothing then (p:s):ss
else [p] : runner Nothing (q:rs)
splitSort :: Ord a => [a] -> [[a]]
splitSort = runner Nothing
My test cases
*Main> splitSort [0,1, 0, 1, 0, 1, 0]
[[0,1],[0,1],[0,1],[0]]
*Main> splitSort [5,6,7,2,1,1,1]
[[5,6,7],[2,1],[1,1]]
*Main> splitSort [0,0,1,0,-1]
[[0,0],[1,0,-1]]
*Main> splitSort [1,2,3,5,2,0,0,0,-1,-1,0]
[[1,2,3,5],[2,0],[0,0],[-1,-1],[0]]
For this solution I am making the assumption that you want the "longest rally". By that I mean:
splitSort [0, 1, 0, 1] = [[0,1], [0,1]] -- This is OK
splitSort [0, 1, 0, 1] = [[0,1], [0], [1]] -- This is not OK despite of fitting your requirements
Essentially, There are two pieces:
Firstly, split the list in two parts: (a, b). Part a is the longest rally considering the order of the two first elements. Part b is the rest of the list.
Secondly, apply splitSort on b and put all list into one list of list
Taking the longest rally is surprisingly messy but straight. Given the list x:y:xs: by construction x and y will belong to the rally. The elements in xs belonging to the rally depends on whether or not they follow the Ordering of x and y. To check this point, you zip every element with the Ordering is has compared against its previous element and split the list when the Ordering changes. (edge cases are pattern matched) In code:
import Data.List
import Data.Function
-- This function split the list in two (Longest Rally, Rest of the list)
splitSort' :: Ord a => [a] -> ([a], [a])
splitSort' [] = ([], [])
splitSort' (x:[]) = ([x],[])
splitSort' l#(x:y:xs) = case span ( (o ==) . snd) $ zip (y:xs) relativeOrder of
(f, s) -> (x:map fst f, map fst s)
where relativeOrder = zipWith compare (y:xs) l
o = compare y x
-- This applies the previous recursively
splitSort :: Ord a => [a] -> [[a]]
splitSort [] = []
splitSort (x:[]) = [[x]]
splitSort (x:y:[]) = [[x,y]]
splitSort l#(x:y:xs) = fst sl:splitSort (snd sl)
where sl = splitSort' l
I wonder whether this question can be solve using foldr if splits and groups a list from
[5,6,7,2,1,1,1]
to
[[5,6,7],[2,1],[1,1]]
instead of
[[5,6,7],[2],[1,1,1]]
The problem is in each step of foldr, we only know the sorted sub-list on right-hand side and a number to be processed. e.g. after read [1,1] of [5,6,7,2,1,1,1] and next step, we have
1, [[1, 1]]
There are no enough information to determine whether make a new group of 1 or group 1 to [[1,1]]
And therefore, we may construct required sorted sub-lists by reading elements of list from left to right, and why foldl to be used. Here is a solution without optimization of speed.
EDIT:
As the problems that #Jonas Duregård pointed out on comment, some redundant code has been removed, and beware that it is not a efficient solution.
splitSort::Ord a=>[a]->[[a]]
splitSort numList = foldl step [] numList
where step [] n = [[n]]
step sublists n = groupSublist (init sublists) (last sublists) n
groupSublist sublists [n1] n2 = sublists ++ [[n1, n2]]
groupSublist sublists sortedList#(n1:n2:ns) n3
| isEqual n1 n2 = groupIf (isEqual n2 n3) sortedList n3
| isAscen n1 n2 = groupIfNull isAscen sortedList n3
| isDesce n1 n2 = groupIfNull isDesce sortedList n3
| otherwise = mkNewGroup sortedList n3
where groupIfNull check sublist#(n1:n2:ns) n3
| null ns = groupIf (check n2 n3) [n1, n2] n3
| otherwise = groupIf (check (last ns) n3) sublist n3
groupIf isGroup | isGroup = addToGroup
| otherwise = mkNewGroup
addToGroup gp n = sublists ++ [(gp ++ [n])]
mkNewGroup gp n = sublists ++ [gp] ++ [[n]]
isEqual x y = x == y
isAscen x y = x < y
isDesce x y = x > y
My initial thought looks like:
ordruns :: Ord a => [a] -> [[a]]
ordruns = foldr extend []
where
extend a [ ] = [ [a] ]
extend a ( [b] : runs) = [a,b] : runs
extend a (run#(b:c:etc) : runs)
| compare a b == compare b c = (a:run) : runs
| otherwise = [a] : run : runs
This eagerly fills from the right, while maintaining the Ordering in all neighbouring pairs for each sublist. Thus only the first result can end up with a single item in it.
The thought process is this: an Ordering describes the three types of subsequence we're looking for: ascending LT, equal EQ or descending GT. Keeping it the same every time we add on another item means it will match throughout the subsequence. So we know we need to start a new run whenever the Ordering does not match. Furthermore, it's impossible to compare 0 or 1 items, so every run we create contains at least 1 and if there's only 1 we do add the new item.
We could add more rules, such as a preference for filling left or right. A reasonable optimization is to store the ordering for a sequence instead of comparing the leading two items twice per item. And we could also use more expressive types. I also think this version is inefficient (and inapplicable to infinite lists) due to the way it collects from the right; that was mostly so I could use cons (:) to build the lists.
Second thought: I could collect the lists from the left using plain recursion.
ordruns :: Ord a => [a] -> [[a]]
ordruns [] = []
ordruns [a] = [[a]]
ordruns (a1:a2:as) = run:runs
where
runs = ordruns rest
order = compare a1 a2
run = a1:a2:runcontinuation
(runcontinuation, rest) = collectrun a2 order as
collectrun _ _ [] = ([], [])
collectrun last order (a:as)
| order == compare last a =
let (more,rest) = collectrun a order as
in (a:more, rest)
| otherwise = ([], a:as)
More exercises. What if we build the list of comparisons just once, for use in grouping?
import Data.List
ordruns3 [] = []
ordruns3 [a] = [[a]]
ordruns3 xs = unfoldr collectrun marked
where
pairOrder = zipWith compare xs (tail xs)
marked = zip (head pairOrder : pairOrder) xs
collectrun [] = Nothing
collectrun ((o,x):xs) = Just (x:map snd markedgroup, rest)
where (markedgroup, rest) = span ((o==).fst) xs
And then there's the part where there's a groupBy :: (a -> a -> Bool) -> [a] -> [[a]] but no groupOn :: Eq b => (a -> b) -> [a] -> [[a]]. We can use a wrapper type to handle that.
import Data.List
data Grouped t = Grouped Ordering t
instance Eq (Grouped t) where
(Grouped o1 _) == (Grouped o2 _) = o1 == o2
ordruns4 [] = []
ordruns4 [a] = [[a]]
ordruns4 xs = unmarked
where
pairOrder = zipWith compare xs (tail xs)
marked = group $ zipWith Grouped (head pairOrder : pairOrder) xs
unmarked = map (map (\(Grouped _ t) -> t)) marked
Of course, the wrapper type's test can be converted into a function to use groupBy instead:
import Data.List
ordruns5 [] = []
ordruns5 [a] = [[a]]
ordruns5 xs = map (map snd) marked
where
pairOrder = zipWith compare xs (tail xs)
marked = groupBy (\a b -> fst a == fst b) $
zip (head pairOrder : pairOrder) xs
These marking versions arrive at the same decoration concept Jonas Duregård applied.

interleaving two strings, preserving order: functional style

In this question, the author brings up an interesting programming question: given two string, find possible 'interleaved' permutations of those that preserves order of original strings.
I generalized the problem to n strings instead of 2 in OP's case, and came up with:
-- charCandidate is a function that finds possible character from given strings.
-- input : list of strings
-- output : a list of tuple, whose first value holds a character
-- and second value holds the rest of strings with that character removed
-- i.e ["ab", "cd"] -> [('a', ["b", "cd"])] ..
charCandidate xs = charCandidate' xs []
charCandidate' :: [String] -> [String] -> [(Char, [String])]
charCandidate' [] _ = []
charCandidate' ([]:xs) prev =
charCandidate' xs prev
charCandidate' (x#(c:rest):xs) prev =
(c, prev ++ [rest] ++ xs) : charCandidate' xs (x:prev)
interleavings :: [String] -> [String]
interleavings xs = interleavings' xs []
-- interleavings is a function that repeatedly applies 'charCandidate' function, to consume
-- the tuple and build permutations.
-- stops looping if there is no more tuple from charCandidate.
interleavings' :: [String] -> String -> [String]
interleavings' xs prev =
let candidates = charCandidate xs
in case candidates of
[] -> [prev]
_ -> concat . map (\(char, ys) -> interleavings' ys (prev ++ [char])) $ candidates
-- test case
input :: [String]
input = ["ab", "cd"]
-- interleavings input == ["abcd","acbd","acdb","cabd","cadb","cdab"]
it works, however I'm quite concerned with the code:
it is ugly. no point-free!
explicit recursion and additional function argument prev to preserve states
using tuples as intermediate form
How can I rewrite the above program to be more "haskellic", concise, readable and more conforming to "functional programming"?
I think I would write it this way. The main idea is to treat creating an interleaving as a nondeterministic process which chooses one of the input strings to start the interleaving and recurses.
Before we start, it will help to have a utility function that I have used countless times. It gives a convenient way to choose an element from a list and know which element it was. This is a bit like your charCandidate', except that it operates on a single list at a time (and is consequently more widely applicable).
zippers :: [a] -> [([a], a, [a])]
zippers = go [] where
go xs [] = []
go xs (y:ys) = (xs, y, ys) : go (y:xs) ys
With that in hand, it is easy to make some non-deterministic choices using the list monad. Notionally, our interleavings function should probably have a type like [NonEmpty a] -> [[a]] which promises that each incoming string has at least one character in it, but the syntactic overhead of NonEmpty is too annoying for a simple exercise like this, so we'll just give wrong answers when this precondition is violated. You could also consider making this a helper function and filtering out empty lists from your top-level function before running this.
interleavings :: [[a]] -> [[a]]
interleavings [] = [[]]
interleavings xss = do
(xssL, h:xs, xssR) <- zippers xss
t <- interleavings ([xs | not (null xs)] ++ xssL ++ xssR)
return (h:t)
You can see it go in ghci:
> interleavings ["abc", "123"]
["abc123","ab123c","ab12c3","ab1c23","a123bc","a12bc3","a12b3c","a1bc23","a1b23c","a1b2c3","123abc","12abc3","12ab3c","12a3bc","1abc23","1ab23c","1ab2c3","1a23bc","1a2bc3","1a2b3c"]
> interleavings ["a", "b", "c"]
["abc","acb","bac","bca","cba","cab"]
> permutations "abc" -- just for fun, to compare
["abc","bac","cba","bca","cab","acb"]
This is fastest implementation I've come up with so far. It interleaves a list of lists pairwise.
interleavings :: [[a]] -> [[a]]
interleavings = foldr (concatMap . interleave2) [[]]
This horribly ugly mess is the best way I could find to interleave two lists. It's intended to be asymptotically optimal (which I believe it is); it's not very pretty. The constant factors could be improved by using a special-purpose queue (such as the one used in Data.List to implement inits) rather than sequences, but I don't feel like including that much boilerplate.
{-# LANGUAGE BangPatterns #-}
import Data.Monoid
import Data.Foldable (toList)
import Data.Sequence (Seq, (|>))
interleave2 :: [a] -> [a] -> [[a]]
interleave2 xs ys = interleave2' mempty xs ys []
interleave2' :: Seq a -> [a] -> [a] -> [[a]] -> [[a]]
interleave2' !prefix xs ys rest =
(toList prefix ++ xs ++ ys)
: interleave2'' prefix xs ys rest
interleave2'' :: Seq a -> [a] -> [a] -> [[a]] -> [[a]]
interleave2'' !prefix [] _ = id
interleave2'' !prefix _ [] = id
interleave2'' !prefix xs#(x : xs') ys#(y : ys') =
interleave2' (prefix |> y) xs ys' .
interleave2'' (prefix |> x) xs' ys
Using foldr over interleave2
interleave :: [[a]] -> [[a]]
interleave = foldr ((concat .) . map . iL2) [[]] where
iL2 [] ys = [ys]
iL2 xs [] = [xs]
iL2 (x:xs) (y:ys) = map (x:) (iL2 xs (y:ys)) ++ map (y:) (iL2 (x:xs) ys)
Another approach would be to use the list monad:
interleavings xs ys = interl xs ys ++ interl ys xs where
interl [] ys = [ys]
interl xs [] = [xs]
interl xs ys = do
i <- [1..(length xs)]
let (h, t) = splitAt i xs
map (h ++) (interl ys t)
So the recursive part will alternate between the two lists, taking all from 1 to N elements from each list in turns and then produce all possible combinations of that. Fun use of the list monad.
Edit: Fixed bug causing duplicates
Edit: Answer to dfeuer. It turned out tricky to do code in the comment field. An example of solutions that do not use length could look something like:
interleavings xs ys = interl xs ys ++ interl ys xs where
interl [] ys = [ys]
interl xs [] = [xs]
interl xs ys = splits xs >>= \(h, t) -> map (h ++) (interl ys t)
splits [] = []
splits (x:xs) = ([x], xs) : map ((h, t) -> (x:h, t)) (splits xs)
The splits function feels a bit awkward. It could be replaced by use of takeWhile or break in combination with splitAt, but that solution ended up a bit awkward as well. Do you have any suggestions?
(I got rid of the do notation just to make it slightly shorter)
Combining the best ideas from the existing answers and adding some of my own:
import Control.Monad
interleave [] ys = return ys
interleave xs [] = return xs
interleave (x : xs) (y : ys) =
fmap (x :) (interleave xs (y : ys)) `mplus` fmap (y :) (interleave (x : xs) ys)
interleavings :: MonadPlus m => [[a]] -> m [a]
interleavings = foldM interleave []
This is not the fastest possible you can get, but it should be good in terms of general and simple.

How to consider previous elements when mapping over a list?

I'm stuck at making a function in Haskell wich has to do the following:
For each integer in a list check how many integers in front of it are smaller.
smallerOnes [1,2,3,5] will have the result [(1,0), (2,1), (3,2), (5,3)]
At the moment I have:
smallerOnes :: [Int] -> [(Int,Int)]
smallerOnes [] = []
smallerOnes (x:xs) =
I don't have any clue on how to tackle this problem. Recursion is probably the way of thinking here but at that point I'm losing it.
It is beneficial here not to start with a base case, but rather with a main case.
Imagine we've already processed half the list. Now we are faced with the rest of the list, say x:xs. We want to know how many integers "before it" are smaller than x; so we need to know these elements, say ys: length [y | y<-ys, y<x] will be the answer.
So you'll need to use an internal function that will maintain the prefix ys, produce the result for each x and return them in a list:
smallerOnes :: [Int] -> [(Int,Int)]
smallerOnes [] = []
smallerOnes xs = go [] xs
where
go ys (x:xs) = <result for this x> : <recursive call with updated args>
go ys [] = []
This can also be coded using some built-in higher-order functions, e.g.
scanl :: (a -> b -> a) -> a -> [b] -> [a]
which will need some post-processing (like map snd or something) or more directly with
mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
mapAccumL is in Data.List.
import Data.List (inits)
smallerOnes :: [Int] -> [(Int,Int)]
smallerOnes xs = zipWith (\x ys -> (x, length $ filter (< x) ys)) xs (inits xs)

Haskell list: Replacing elements given their locations in the list

I'm fairly new to Haskell and trying to figure out how I would write a Function to do this and after combing Google for a few hours I'm at a loss on how to do it.
Given the following two lists in Haskell
[(500,False),(400,False),(952,True),(5,False),(42,False)]
[0,2,3]
How would I change the Boolean of the First list at each location given by the second list to a Value of True for an Output of
[(500,True),(400,False),(952,True),(5,True),(42,False)]
This is how I would do it (assumes the list of indexes to replace is sorted).
First we add an index list alongside the list of indexes to replace and the original list.
Then we recurse down the list and when we hit the next index to replace we replace the boolean and recurse on the tail of both all three lists. If this is not an index to
replace we recurse on the entire replacement index list and the tail of the other two lists.
setTrue :: [Int] -> [(a, Bool)] -> [(a, Bool)]
setTrue is xs = go is xs [0..] -- "Index" the list with a list starting at 0.
where
go [] xs _ = xs -- If we're out of indexes to replace return remaining list.
go _ [] _ = [] -- If we run out of list return the empty list.
go indexes#(i:is) (x:xs) (cur:cs)
| i == cur = (fst x, True) : go is xs cs -- At the next index to replace.
| otherwise = x : go indexes xs cs -- Otherwise, keep the current element.
This is basically the same as Andrew's approach, but it doesn't use an additional index list, and is a little bit more inspired by the traditional map. Note that unlike map, the provided function must be a -> a and cannot be a -> b.
restrictedMap :: (a -> a) -> [Int] -> [a] -> [a]
restrictedMap f is xs = go f is xs 0
where
go f [] xs _ = xs
go f _ [] _ = []
go f ind#(i:is) (x:xs) n
| i == n = f x : go f is xs (n+1)
| otherwise = x : go f ind xs (n+1)
setTrue = restrictedMap (\(x,_) -> (x, True))
Straightforward translation from the description will be:
setIndexTrue f a = [(x, p || i `elem` f) | (i, (x,p)) <- zip [0..] a]
Or using the fantastic lens library:
setTrue :: [(a,Bool)] -> Int -> [(a,Bool)]
setTrue xs i = xs & ix i . _2 .~ True
setTrues :: [(a,Bool)] -> [Int] -> [(a,Bool)]
setTrues = foldl setTrue
Since the approach I would use is not listed:
setTrue spots values = let
pattern n = replicate n False ++ [True] ++ Repeat False
toSet = foldl1 (zipWith (||)) $ map pattern spots
in zipWith (\s (v,o) -> (v, o || s)) toSet values

Resources