BoundingBox Shape - android-mapview

In my Android mapping activity, I have a parallelogram shaped area that I want to tell if points (ie:LatLng) are inside. I've tried using the:
bounds = new LatLngBounds.Builder()
.include(latlngNW)
.include(latlngNE)
.include(latlngSW)
.include(latlngSE)
.build();
and later
if (bounds.contains(currentLatLng) {
.....
}
but it is not that accurate. Do I need to create equations for lines connecting the four corners?
Thanks in advance.

The LatLngBounds appears to create a box from the points included. Given the shape that I'm trying to monitor is a parallelogram, you do need to create equations for each of the edges of the shape and use if statements to determine which side of the line a point lies.
Not an easy solution!

If you wish to build a parallelogram-shaped bounding "box" from a collection of points, and you know the desired angles of the parallelogram's sides, your best bet is to probably define a 2d linear shear transform which will one of those angles to horizontal, and the other to vertical. One may then feed the transformed points into normal "bounding box" routines, and feed the corners of the resulting box through the inverse of the above transform to get a bounding parallelogram.
Note that this approach is generally only suitable for parallelograms, not trapezoids. There are a few special cases where it could be used to find bounding trapezoids [e.g. if the top and bottom were horizontal, and the sides were supposed to converge at a known point (x0-y0), one could map x' = (x-x0)/(y-y0)] but for many kinds of trapezoids, the trapezoid formed by inverse mapping the corners of a horizontal/vertical bounding rectangle may not properly bound the points that are supposed to be within it.

Related

How can i create an image morpher inside a graphics shader?

Image morphing is mostly a graphic design SFX to adapt one picture into another one using some points decided by the artist, who has to match the eyes some key zones on one portrait with another, and then some kinds of algorithms adapt the entire picture to change from one to another.
I would like to do something a bit similar with a shader, which can load any 2 graphics and automatically choose zones of the most similar colors in the same kinds of zone of the picture and automatically morph two pictures in real time processing. Perhaps a shader based version would be logically alot faster at the task? except I don't even understand how it works at all.
If you know, Please don't worry about a complete reply about the process, it would be great if you have save vague background concepts and keywords, for how to attempt a 2d texture morph in a graphics shader.
There are more morphing methods out there the one you are describing is based on geometry.
morph by interpolation
you have 2 data sets with similar properties (for example 2 images are both 2D) and interpolate between them by some parameter. In case of 2D images you can use linear interpolation if both images are the same resolution or trilinear interpolation if not.
So you just pick corresponding pixels from each images and interpolate the actual color for some parameter t=<0,1>. for the same resolution something like this:
for (y=0;y<img1.height;y++)
for (x=0;x<img1.width;x++)
img.pixel[x][y]=(1.0-t)*img1.pixel[x][y] + t*img2.pixel[x][y];
where img1,img2 are input images and img is the ouptput. Beware the t is float so you need to overtype to avoid integer rounding problems or use scale t=<0,256> and correct the result by bit shift right by 8 bits or by /256 For different sizes you need to bilinear-ly interpolate the corresponding (x,y) position in both of the source images first.
All This can be done very easily in fragment shader. Just bind the img1,img2 to texture units 0,1 pick the texel from them interpolate and output the final color. The bilinear coordinate interpolation is done automatically by GLSL because texture coordinates are normalized to <0,1> no matter the resolution. In Vertex you just pass the texture and vertex coordinates. And in main program side you just draw single Quad covering the final image output...
morph by geometry
You have 2 polygons (or matching points) and interpolate their positions between the 2. For example something like this: Morph a cube to coil. This is suited for vector graphics. you just need to have points corespondency and then the interpolation is similar to #1.
for (i=0;i<points;i++)
{
p(i).x=(1.0-t)*p1.x + t*p2.x
p(i).y=(1.0-t)*p1.y + t*p2.y
}
where p1(i),p2(i) is i-th point from each input geometry set and p(i) is point from the final result...
To enhance visual appearance the linear interpolation is exchanged with specific trajectory (like BEZIER curves) so the morph look more cool. For example see
Path generation for non-intersecting disc movement on a plane
To acomplish this you need to use geometry shader (or maybe even tesselation shader). you would need to pass both polygons as single primitive, then geometry shader should interpolate the actual polygon and pass it to vertex shader.
morph by particle swarms
In this case you find corresponding pixels in source images by matching colors. Then handle each pixel as particle and create its path from position in img1 to img2 with parameter t. It i s the same as #2 but instead polygon areas you got just points. The particle has its color,position you interpolate both ... because there is very slim chance you will get exact color matches and the count ... (histograms would be the same) which is in-probable.
hybrid morphing
It is any combination of #1,#2,#3
I am sure there is more methods for morphing these are just the ones I know of. Also the morphing can be done not only in spatial domain...

triangle points around a point

I have given the coordinates of 1000 triangles on a plane (triangle number (T0001-T1000) and its coordinates (x1,y1) (x2,y2),(x3,y3)). Now, for a given point P(x,y), I need to find a triangle which contains the point P.
One option might be to check all the triangles and find the triangle that contain P. But, I am looking for efficient solution for this problem.
You are going to have to check every triangle at some point during the execution of your program. That's obvious right? If you want to maximize the efficiency of this calculation then you are going to create some kind of cache data structure. The details of the data structure depend on your application. For example: How often do the triangles change? How often do you need to calculate where a point is?
One way to make the cache would be this: Divide your plane in to a finite grid of boxes. For each box in the grid, store a list of the triangles that might intersect with the box.
Then when you need to find out which triangles your point is inside of, you would first figure out which box it is in (this would be O(1) time because you just look at the coordinates) and then look at the triangles in the triangle list for that box.
Several different ways you could search through your triangles. I would start by eliminating impossibilities.
Find a lowest left corner for each triangle and eliminate any that lie above and/or to the right of your point. continue search with the other triangles and you should eliminate the vast majority of the original triangles.
Take what you have left and use the polar coordinate system to gather the rest of the needed information based on angles between the corners and the point (java does have some tools for this, I do not know about other languages).
Some things to look at would be convex hull (different but somewhat helpful), Bernoullies triangles, and some methods for sorting would probably be helpful.

Detecting arbitrary shapes

Greetings,
We have a set of points which represent an intersection of a 3d body and a horizontal plane. We would like to detect the 2D shapes that represent the cross sections of the body. There can be one or more such shapes. We found articles that discuss how to operate on images using Hough Transform, but we may have thousands of such points, so converting to an image is very wasteful. Is there a simpler way to do this?
Thank you
In converting your 3D model to a set of points, you have thrown away the information required to find the intersection shapes. Walk the edge-face connectivity graph of your 3D model to find the edge-plane intersection points in order.
Assuming you have, or can construct, the 3d model topography (some number of vertices, edges between vertices, faces bound by edges):
Iterate through the edge list until you find one that intersects the test plane, add it to a list
Pick one of the faces that share this edge
Iterate through the other edges of that face to find the next intersection, add it to the list
Repeat for the other face that shares that edge until you arrive back at the starting edge
You've built an ordered list of edges that intersect the plane - it's trivial to linearly interpolate each edge to find the intersection points, in order, that form the intersection shape. Note that this process assumes that the face polygons are convex, which in your case they are.
If your volume is concave you'll have multiple discrete intersection shapes, and so you need to repeat this process until all edges have been examined.
There's some java code that does this here
The algorithm / code from the accepted answer does not work for complex special cases, when the plane intersects some vertices of a concave surface. In this case "walking" the edge-face connectivity graph greedily could close some of the polygons before time.
What happens is, that because the plane intersects a vertex, at one point when walking the graph there are two possibilities for the next edge, and it does matter which one is chosen.
A possible solution is to implement a graph traversal algorithm (for instance depth-first search), and choose the longest loop which contains the starting edge.
It looks like you wanted to combine intersection points back into connected figures using some detection or Hough Transform.
Much simpler and more robust way is to immediately get not just intersection points, but contours of 3D body, where the plane cuts it.
To construct contours on the body given by triangular mesh, define the value in each mesh vertex equal to signed distance from the plane (positive on one side of the plane and negative on the other side). The marching squares algorithm for isovalue=0 can be then applied to extract the segments of the contours:
This algorithm works well even when the plane passes through a vertex or an edge of the mesh.
To better understand what is the result of plane section, please take a look at this short video. Following the links there, one can find the implementation as well.

Creating closed spatial polygons

I need to create a (large) set of spatial polygons for test purposes. Is there an algorithm that will create a randomly shaped polygon staying within a bounding envelope? I'm using OGC Simple stuff so a routine to create the well known text is the most useful, Language of choice is C# but it's not that important.
Here you can find two examples of how to generate random convex polygons. They both are in Java, but should be easy to rewrite them to C#:
Generate Polygon example from Sun
from JTS mailing list, post Minimum Area bounding box by Michael Bedward
Another possible approach based on generating set of random points and employ Delaunay tessellation.
Generally, problem of generating proper random polygons is not trivial.
Do they really need to be random, or would some real WKT do? Because if it will, just go to http://koordinates.com/ and download a few layers.
What shape is your bounding envelope ? If it's a rectangle, then generate your random polygon as a list of points within [0,1]x[0,1] and scale to the size of your rectangle.
If the envelope is not a rectangle things get a little more tricky. In this case you might get best performance simply by generating points inside the unit square and rejecting any which lie in the part of the unit square which does not scale to the bounding envelope of your choice.
HTH
Mark
Supplement
If you wanted only convex polygons you'd use one of the convex hull algorithms. Since you don't seem to want only convex polygons your suggestion of a circular sweep would work.
But you might find it simpler to sweep along a line parallel to either the x- or y-axis. Assume the x-axis.
Sort the points into x-order.
Select the leftmost (ie first) point. At the y-coordinate of this point draw an imaginary horizontal line across the unit square. Prepare to create a list of points along the boundary of the polygon above the imaginary line, and another list along the boundary below it.
Select the next point. Add it to the upper or lower boundary list as determined by it's y-coordinate.
Continue until you're out of points.
This will generate convex and non-convex polygons, but the non-convexity will be of a fairly limited form. No inlets or twists and turns.
Another Thought
To avoid edge crossings and to avoid a circular sweep after generating your random points inside the unit square you could:
Generate random points inside the unit circle in polar coordinates, ie (r, theta).
Sort the points in theta order.
Transform to cartesian coordinates.
Scale the unit circle to a bounding ellipse of your choice.
Off the top of my head, that seems to work OK

Searching a database of coordinate-bound data for an arbitrary polygonal area

I have a relational database where each entry is marked as a dot with latitude/longitude coordinates. I give the user the ability to mark an arbitrary polygon on a map, and want to return all entries that are within the polygonal shape.
What would be the best way to achieve this?
Also, it might be worth to point out that small errors are ok (ie. if there is an effective way to turn the polygon into a set of rectangles, then that is fine).
Use spatial extensions, most databases have this.
In MySql you can only use them with MyISAM tables which are not transactional.
http://dev.mysql.com/doc/refman/5.0/en/spatial-extensions.html
One way to quickly cut down on the number of points to consider is to compute the bounding rectangle for the polygon (i.e. just min-x, min-y, max-x, max-y of the points in the polygon), and then select for points within the bounding rectangle (i.e. where x is between min-x and max-x and same for y).
Of course not all these points are necessarily inside the polygon, but now you can hone it with code.
An old hack:
Count the number of times a line connecting <point far away> to <point in question> crosses any of the bounding segments of the polygon.
Even numbers mean the point is outside the polygon
Odd numbers mean it is inside the polygon

Resources