Consecutive use of kmap_atomic() and kunmap_atomic() - linux

I'm writing a loadable module for Linux kernel, where I have a need to map and unmap memory pages. It happens while all interrupts are disabled. The sequence of actions looks like this:
preempt_disable();
disable_all_interrupts(&interrupt_mask_saved);
kmap_atomic(page); // here i map ONE page
do_some_work();
kunmap_atomic(page); // unmapping ONE page
restore_all_interrupts(interrupt_mask_saved);
preempt_enable();
With actions like these it all works pretty well. But when I need to map/unmap several pages (i need it to improve cpu load) like this:
preempt_disable();
disable_all_interrupts(&interrupt_mask_saved);
for (i = 0; i < page_num; i++) {
kmap_atomic(page[ i ]); // here i map several pages
}
do_some_work();
// i tried backward unmapping but the result is the same
for (i = 0; i < page_num; i++) {
kunmap_atomic(); // unmapping several pages
}
restore_all_interrupts(interrupt_mask_saved);
preempt_enable();
The system crashes. Error and info messages are shown directly in the terminal when not in graphic mode. After outputting some messages to the screen system freezes. Kernel logs are empty, but the errors which I noticed are:
scheduling while atomic
thread overran stack or stack corrupted
In Linux code I found than kunmap_atomic use preempt_schedule() and probably this is the cause of scheduling while atomic. But I rewrote my own functions of kmap_atomic and kunmap_atomic without dealing with preemptions and it still doesn't work. Actions which I do between mapping and unmapping are not the cause because I tried without them and it still freezes.
Linux kernel version: 3.0.48, Distr AltLinux 7.0.1 and Altlinux 6.0
Kernel version 3.4.62 works fine but I need exactly 3.0.48
I've been struggling with it for a while but I have no ideas. Do you have any?

You have to pair nested kmap/kunmap functions.
Like:
for (i = 0; i < page_num; i++) {
address[i] = kmap_atomic(page[i]);
}
do_some_work();
for (i = page_num - 1; i >= 0; i--) {
kunmap_atomic(address[i]);
}

calling schedule or anything that sleeps when in interrupt context is the cause
even though u have removed preempt_schedule, there might be something still sleeping and sleeping calls schedule, Check this

Related

Limit Execution Time in Node

I am working on a node-based MUD game and I would like to limit the amount of time any one command can execute before it gets killed (e.g. 1000ms). I found a module called Tripwire which seems promising but it does not appear to be actively maintained. Tripwire does work as advertised. It manages to force an exception if someone creates an endless loop, but it does not support any resumption of the original script thread.
I am looking for either:
(1) A similar but actively maintained Node module that can interrupt and resume the original event thread, or,
(2) A working example of V8's Isolate::IsExecutionTerminating + Isolate::CancelTerminateExecution (I forked Tripwire but I haven't done any meaningful C++ in a long time and am now just beating my head against the wall).
I have only been able to find test cases so far (which is at least something). I am really hoping that someone has already tackled this, though.
Test cases:
https://chromium.googlesource.com/v8/v8/+/ad55afcb459dafda1cf48e676985717fd7eae786/test/cctest/test-thread-termination.cc
I know this is a bit vague.
I ended up instrumenting the script by passing it through acorn and generating my own final script. I am hoping that the sandbox is locked down to prevent users from escaping it. Example of "compiled" output:
createPermissions(expr) {
let __mec = __bfc(this || GameMaster, 'public', 'createPermissions', __FILE__, false); try { let parts = expr.split('/');
for (let i = 0; i < parts.length; i++) {
__ala(); let foo = parts.slice(0, i).join('/');
} } finally { __efc(__mec, 'createPermissions'); }
}
This new "language" supports public, protected, package, and private variables/methods (by maintaining its own internal call stack, execution context, etc). The directives are "reserved words" (e.g. __bfc=begin function call, __ala=assert loop alarm).
Thanks #jfriend00 for the suggestion.
For those who are curious: Transpiler Module

USB Serial port programming has "disastrous" results

I am currently working on a C program running on a Raspberry Pi 3 (Linux Ubuntu) that is intended to provide a web page interface for configuring networking on an embedded system.
The code is being developed using Code::Blocks with the GDB debugger. I'm using microhttpd for the web server and that, plus the various web pages, are all working great. I'm now working on the USB Serial link to the embedded system using information in "Serial Programming Guide for POSIX Operating Systems".
The code below is responsible for opening the USB Serial link to the target system and seems to work fine - once. If I close the program and restart it (either standalone on the command line or from within Code::Blocks) the second time microhttpd is hosed - browser windows will no longer connect. Further, from within Code::Blocks the debugger is also hosed - once the program is started it cannot be paused or stopped. The only way is to kill it by closing the project.
The problem is clearly within the function since I can comment out the call to it and everything works as it did previously. Unfortunately, once the problem happens the only solution seems to be to reboot the Pi.
I've done things like this before using a scripting language (Tcl) but this time around I'm looking for a performance boost from a non-interpreted language since the Pi will also be running a high bandwidth data logging program through a similar USB serial interface.
The code is shown below:
/******************************************************************************/
/* This function scans through the list of USB Serial ports and tries to */
/* establish communication with the target system. */
/******************************************************************************/
void tapCommInit(void) {
char line[128];
char port[15]; // this is always of the form "/dev/TTYACMn"
char *ptr;
FILE *ifd;
struct termios options;
uint8_t msgOut[3], msgIn[4];
msgOut[0] = REQ_ID; // now prepare the message to send
msgOut[1] = 0; // no data so length is zero
msgOut[2] = 0;
/**************************************************************************/
/* First, get the list of USB Serial ports. */
/**************************************************************************/
system("ls -l /dev/serial/by-path > usbSerial\n"); // get current port list
ifd = fopen("usbSerial", "r");
logIt(fprintf(lfd, "serial ports: \n"));
/**************************************************************************/
/* The main loop iterates through the file looking for lines containing */
/* "tty" which should be a valid USB Serial port. The port is configured */
/* in raw mode as 8N1 and an ID request command is sent, which has no */
/* data. If a response is received it's checked to see if the returned */
/* ID is a match. If not, the port is closed and we keep looking. If a */
/* match is found, tapState is set to "UP" and the function returns. If */
/* no match is found, tapState is left in the initial "DOWN" state. */
/**************************************************************************/
while(1) {
if (fgets(line, 127, ifd) == NULL) { // end of file?
break; // yes - break out and return
}
ptr = strstr(line, "tty"); // make sure the line contains a valid entry
if (ptr == NULL) {
continue; // nothing to process on this line
}
strcpy(port, "/dev/"); // create a correct pathname
strcat(port, ptr); // append the "ttyACMn" part of the line
port[strlen(port)-1] = 0; // the last character is a newline - remove it
logIt(fprintf(lfd," %s\n", port)); // we have a port to process now
cfd = open(port, O_RDWR | O_NOCTTY | O_NDELAY); // cfd is a global int
if (cfd == -1) {
logIt(fprintf(lfd, "Could not open port: %s\n", port));
continue; // keep going with the next one (if any)
}
fcntl(cfd, F_SETFL, 0); // blocking mode
tcgetattr(cfd, &options); // get the current port settings
options.c_cflag |= (CLOCAL | CREAD); // ena receiver, ignore modem lines
options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); // raw, no echo
options.c_oflag &= ~OPOST; // no special output processing
options.c_cc[VMIN] = 0; // minimum number of raw read characters
options.c_cc[VTIME] = 10; // timeout in deciseconds (1 second timeout)
tcsetattr(cfd, TCSANOW, &options); // set options right now
cfsetispeed(&options, B115200); // input baud rate
cfsetospeed(&options, B115200); // output baud rate
options.c_cflag &= ~(CSIZE | PARENB | // clear size bits, no parity
CSTOPB | CRTSCTS); // 1 stop bit, no hw flow control
options.c_cflag |= CS8; // now set size: 8-bit characters
options.c_cflag &= ~(IXON | IXOFF | IXANY); // no sw flow control
if (write(cfd, msgOut, 3) < 3) {
logIt(fprintf(lfd, "Sending of output message failed\n"));
close(cfd);
continue;
}
if (read(cfd, msgIn, 4) != 4) {
logIt(fprintf(lfd, "Didn't get expected amount of return data\n"));
close(cfd);
continue;
}
if (msgIn[3] != HOST_ID) {
logIt(fprintf(lfd, "Got the wrong HOST_ID response\n"));
close(cfd);
continue;
}
logIt(fprintf(lfd, "Port found - communication established\n"));
tapState = UP;
break; // we're done - break out of the loop
}
fclose(ifd); // close and remove the file we created
remove("usbSerial");
}
from within Code::Blocks the debugger is also hosed - once the program is started it cannot be paused or stopped
It is far more likely that you do not understand your tools than that you have created an unkillable program.
It's easy enough to figure this out: divide and conquer. You've got a whole pile of unrelated components here. Start separating them and find out which pieces work fine in isolation and which continue to behave badly when disconnected from everything else. Then you'll have your culprit.
Specifically here, that means try running your program outside the IDE, then under command line gdb instead of GDB via the IDE.
Also, it should be possible to run your program without starting the web server piece, so that you can run the serial part of the app in isolation. This is not only good for debugging by minimizing confounding variables, it also encourages a loosely-coupled program design, which is a good thing in its own right.
In the end, you may find that the thing keeping your program from stopping is the web framework, Code::Blocks, or the way GDB operates on the Pi under Code::Blocks, rather than anything to do with the USB to serial adapter.
once the problem happens the only solution seems to be to reboot the Pi
If your program is still running in the background, then of course your next instance will fail if it tries to open the same USB port.
Don't guess, find out:
$ sudo lsof | grep ttyACM
or:
$ lsof -p $(pidof myprogram)
(Substitute pgrep if your system doesn't have pidof.)
I've done things like this before using a scripting language (Tcl) but this time around I'm looking for a performance boost from a non-interpreted language
Your serial port is running at 115,200 bps. Divide that by 10 to account for the stop and start bits, then flip the fraction to get seconds per byte, and you come to 87 microseconds per byte. And you only achieve that when the serial port is running flat-out, sending or receiving 11,500 bytes per second. Wanna take a guess at how many lines of code Tcl can interpret in 87 microseconds? Tcl isn't super-fast, but 87 microseconds is an eternity even in Tcl land.
Then on the other side of the connection, you have HTTP and a [W]LAN, likely adding another hundred milliseconds or so of delay per transaction.
Your need for speed is an illusion.
Now come back and talk to me again when you need to talk to 100 of these asynchronously, and then maybe we can start to justify C over Tcl.
(And I say this as one whose day job involves maintaining a large C++ program that does a lot of serial and network I/O.)
Now lets get to the many problems with this code:
system("ls -l /dev/serial/by-path > usbSerial\n"); // get current port list
ifd = fopen("usbSerial", "r");
Don't use a temporary where a pipe will suffice; use popen() here instead.
while(1) {
This is simply wrong. Say while (!feof(ifd)) { here, else you will attempt to read past the end of the file.
This, plus the next error, is likely the key to your major symptoms.
if (fgets(line, 127, ifd) == NULL) {
break;
There are several problems here:
You're assuming things about the meaning of the return value that do not follow from the documentation. The Linux fopen(3) man page isn't super clear on this; the BSD version is better:
The fgets() and gets() functions do not distinguish between end-of-file and error, and callers must use feof(3) and ferror(3) to determine which occurred.
Because fgets() is Standard C, and not Linux- or BSD-specific, it is generally safe to consult other systems' manual pages. Even better, consult a good generic C reference, such as Harbison & Steele. (I found that much more useful than K&R back when I was doing more pure C than C++.)
Bottom line, simply checking for NULL doesn't tell you everything you need to know here.
Secondarily, the hard-coded 127 constant is a code bomb waiting to go off, should you ever shrink the size of the line buffer. Say sizeof(line) here.
(No, not sizeof(line) - 1: fgets() leaves space for the trailing null character when reading. Again, RTFM carefully.)
The break is also a problem, but we'll have to get further down in the code to see why.
Moving on:
strcat(port, ptr); // append the "ttyACMn" part of the line
Two problems here:
You're blindly assuming that strlen(ptr) <= sizeof(port) - 6. Use strncat(3) instead.
(The prior line's strcpy() (as opposed to strncpy()) is justifiable because you're copying a string literal, so you can see that you're not overrunning the buffer, but you should get into the habit of pretending that the old C string functions that don't check lengths don't even exist. Some compilers will actually issue warnings when you use them, if you crank the warning level up.)
Or, better, give up on C strings, and start using std::string. I can see that you're trying to stick to C, but there really are things in C++ that are worth using, even if you mostly use C. C++'s automatic memory management facilities (not just string, but also auto_ptr/unique_ptr and more) fall into this category.
Plus, C++ strings operate more like Tcl strings, so you'll probably be more comfortable with them.
Factual assertions in comments must always be true, or they are likely mislead you later, potentially hazardously so. Your particular USB to serial adapter may use /dev/ttyACMx, but not all do. There's another common USB device class used by some serial-to-USB adapters that causes them to show up under Linux as ttyUSBx. More generally, a future change may change the device name in some other way; you might port to BSD, for example, and now your USB to serial device is called /dev/cu.usbserial, blowing your 15-byte port buffer. Don't assume.
Even with the BSD case aside, your port buffer should not be smaller than your line buffer, since you are concatenating the latter onto the former. At minimum, sizeof(port) should be sizeof(line) + strlen("/dev/"), just in case. If that seems excessive, it is only because 128 bytes for the line buffer is unnecessarily large. (Not that I'm trying to twist your arm to change it. RAM is cheap; programmer debugging time is expensive.)
Next:
fcntl(cfd, F_SETFL, 0); // blocking mode
File handles are blocking by default in Unix. You have to ask for a nonblocking file handle. Anyway, blasting all the flags is bad style; you don't know what other flags you're changing here. Proper style is to get, modify, then set, much like the way you're doing with tcsetattr():
int flags;
fcntl(cfd, F_GETFL, &flags);
flags &= ~O_NONBLOCK;
fcntl(cfd, F_SETFL, flags);
Well, you're kind of using tcsetattr() correctly:
tcsetattr(cfd, TCSANOW, &options);
...followed by further modifications to options without a second call to tcsetattr(). Oops!
You weren't under the impression that modifications to the options structure affect the serial port immediately, were you?
if (write(cfd, msgOut, 3) < 3) {
logIt(fprintf(lfd, "Sending of output message failed\n"));
close(cfd);
continue;
}
Piles of wrong here:
You're collapsing the short-write and error cases. Handle them separately:
int bytes = write(cfd, msgOut, 3);
if (bytes == 0) {
// can't happen with USB, but you may later change to a
// serial-to-Ethernet bridge (e.g. Digi One SP), and then
// it *can* happen under TCP.
//
// complain, close, etc.
}
else if (bytes < 0) {
// plain failure case; could collapse this with the == 0 case
// close, etc
}
else if (bytes < 3) {
// short write case
}
else {
// success case
}
You aren't logging errno or its string equivalent, so when (!) you get an error, you won't know which error:
logIt(fprintf(lfd, "Sending of output message failed: %s (code %d)\n",
strerror(errno), errno));
Modify to taste. Just realize that write(2), like most other Unix system calls, has a whole bunch of possible error codes. You probably don't want to handle all of them the same way. (e.g. EINTR)
After closing the FD, you're leaving it set to a valid FD value, so that on EOF after reading one line, you leave the function with a valid but closed FD value! (This is the problem with break above: it can implicitly return a closed FD to its caller.) Say cfd = -1 after every close(cfd) call.
Everything written above about write() also applies to the following read() call, but also:
if (read(cfd, msgIn, 4) != 4) {
There's nothing in POSIX that tells you that if the serial device sends 4 bytes that you will get all 4 bytes in a single read(), even with a blocking FD. You are especially unlikely to get more than one byte per read() with slow serial ports, simply because your program is lightning fast compared to the serial port. You need to call read() in a loop here, exiting only on error or completion.
And just in case it isn't obvious:
remove("usbSerial");
You don't need that if you switch to popen() above. Don't scatter temporary working files around the file system where a pipe will do.

node.js multithreading with max child count

I need to write a script, that takes an array of values and multithreaded way it (forks?) runs another script with a value from array as a param, but so max running forks would be set, so it would wait for script to finish if there are more than n running already. How do I do that?
There is a plugin named child_process, but not sure how to get it done, as it always waits for child termination.
Basically, in PHP it would be something like this (wrote it from head, may contain some syntax errors):
<php
declare(ticks = 1);
$data = file('data.txt');
$max=20;
$child=0;
function sig_handler($signo) {
global $child;
switch ($signo) {
case SIGCHLD:
$child -= 1;
}
}
pcntl_signal(SIGCHLD, "sig_handler");
foreach($data as $dataline){
$dataline = trim($dataline);
while($child >= $max){
sleep(1);
}
$child++;
$pid=pcntl_fork();
if($pid){
// SOMETHING WENT WRONG? NEVER HAPPENS!
}else{
exec("php processdata.php \"$dataline\"");
exit;
}//fork
}
while($child != 0){
sleep(1);
}
?>
After the conversation in the comments, here's how to have Node executing your PHP script.
Since you're calling an external command, there's no need to create a new thread. The Node.js runloop understands that calls to external commands are async operations, and it can execute all of them at the same time.
You can see different ways for executing an external process in this SO question (linked answer may be the best in your case).
However, since you're already moving everything to Node, you may even consider rewriting your "process.php" script to Node.js code. Since, as you explained, that script connects to remote servers and databases and uses nslookup (which you may not really need with Node.js), you won't need any separate thread: they're all async operations that Node.js excels at performing.

How to crash my Node app on purpose?

I've been working on a deployment work flow with Dokku and Docker and now I want to take care of continuity of my app (along the lines of Forever). To test it, I need a way to deliberately crash my app.
I created a new route '/crashme' with a function that is supposed to wreck my app.
Haven't found a way that worked locally with node/nodemon so far, I've tried:
Division by zero
Throw a new user exception
Referencing a variable that doesn't exist
None of those things crash the app to a point where it needs to be restarted.
Just how can I bring it down?
Three things come to my mind:
You could just call process.exit. This for sure brings your application to a state where it needs to be restarted.
The other option might be to run an endless loop, something such as while (true) {}. This should make Node.js use 100% of your CPU, and hence the application should be restarted as well (although this, of course, means that you / someone has to watch your application).
Create a module in C that crashes by e.g. trying to access a random place in memory. I have no such module at hand, but I'm pretty sure that it should be quite easy for someone with C skills to write such a module.
I was attempting a similar thing with a /crash route in express, but just throwing an error from within the route handler was not enough to crash it.
process.exit would stop my app but forever would not restart it. (The forever logs just said something like process self terminated.)
What did work for me was inserting this into my /crash route:
setTimeout(function () {
throw new Error('We crashed!!!!!');
}, 10);
To add to Golo answer:
C module to crash by segmentation fault:
int main ()
{
//Create a array of 1 char
char a [1];
//Create a index
int i = 0;
//Infinite loop to go around the compiler
while(1)
{
//Write on case i of a, on the second iteration, it will write in unreserved memory => crash
a[i] = 0;
i = i + 1;
}
//Should not go there
return -1;
}
And adding to DrakaSAN's answer, an even simpler C module to crash:
int main()
{
*(int*)(0) = 0;
return -1;
}
Even shorter ones are available on this page. If you don't want it to be too hard to read, you can probably go with
int main()
{
int i=1/0;
}

How to create an execve() child process with the right tty settings to run 'vi' yet still redirect IO back to the parent process?

How do I get a forked, execve() child process that can run 'vi', etc. and redirect all IO to the parent process?
I'm trying to pass shells through from an embedded Linux process to the PC software interface connected over the network. The IO for the shell process is packaged into app-specific messages for network transport over our existing protocol.
First I was just redirecting IO using simply pipe2(), fork(), dup2(), and execve(). This didn't give me a tty on the remote side, so screen, etc. didn't work.
Now I'm using forkpty, and screen mostly works, but many many other don't (vi, stty, etc). It appears the current problem is that the child process doesn't control the tty.
I've been experimenting with TIOCSCTTY, but haven't had much luck.
Here's more or less what I've got:
bool ExternalProcess::launch(...)
{
...
winsize winSize;
winSize.ws_col = 80;
winSize.ws_row = 25;
winSize.ws_xpixel = 10;
winSize.ws_ypixel = 10;
_pid = forkpty(&_stdin, NULL, NULL, &winSize);
//ioctl(_stdin, TIOCNOTTY, NULL);
if (!_pid && (_pid != -1))
{
// this is the child process
char tty[4096];
strncpy(tty, ttyname(STDIN_FILENO), sizeof(tty));
tty[sizeof(tty)-1]=0;
FILE* fp = fopen("debug.txt", "wt"); // no error checking - temporary test code
fprintf(fp, "slave TTY %s", tty);
//if (ioctl(_stdin, TIOCSCTTY, NULL) < 0)
if (ioctl(STDIN_FILENO, TIOCSCTTY, NULL) < 0)
{
fprintf(fp, "ioctl() TIOCSCTTY %s\n", strerror(errno));
fflush(fp);
}
else
{
fprintf(fp, "SET CONTROLLING TTY!");
fflush(fp);
}
fclose(fp);
// command, args, env populated elsewhere
execve(command, args, env);
...
// fail path
_exit(-1);
return false;
}
_stdout = _stdin;
...
// enter select() loop reading/writing _stdin, _stdout
}
I am getting results in the debug file like:
slave TTY /dev/pts/5
SET CONTROLLING TTY!
but still many apps are failing with tcsetattr() errors. Am I right in thinking this is a controlling tty problem? How do I fix it?
EDIT
Minor correction. When I do the ioctl TIOCSCTTY on STDIN_FILENO, then it works as in the debug file above, but the IO redirection back to the parent process is disrupted.
EDIT 2
Okay, I'm starting to understand this better. Looking at the kernel source for the ioctl behind tcsetattr(), the processes I am calling are being sent SIGTTIN and SIGTTOU when trying to change the tty.
Only a foreground process can do that, and they're running as if they're background processes. I tried setting those signals to SIG_IGN after forking and before the execve(), but that didn't work. The semantics of this I understand, but it's safe in my redirection scenario for the execve()'d processes to act as if they're foreground processes. The question is... how to make it so? I will continue to search in the kernel code for clues.
Ugh! It's bash, the shell I was calling with execve().
If it detects that stderr is not attached to a tty, then it enters this special mode where child processes cause SIGTTOU.
I found a mention of this problem here.
When I stopped redirecting stderr away from the tty, then it now seems to work as planned.

Resources