alloy relation facts - alloy

Below is part of my work so far. I'm getting cycles and both ways connections in between my Lines and single connections from Messages to Lines for some reason. I don't see why there are never more than one message to line connections. My facts are probably (most likely) a little wrong. Thanks for the help.
some sig Line{
nextLine: some Line,
}
sig Message{
formedOfLines: Line,
}
fact MessageHasMoreThan1LineHasNextLine{
all m:Message|#m.formedOfLines>1 implies #m.formedOfLines.nextLine>0
}
fact NoNextLineIsSelf
{
all l1,l2:Line | l1=l2 implies l1.nextLine!=l2
}
fact LineBelongsToSomeMessage
{
all l:Line | l in Message.formedOfLines
}

Your model allows each Line to have multiple nextLines, which might not be your intention. That's why your NoNextLineIsSelf fact doesn't actually prevent loops, because l.nextLine != l can be true if l.nextLine contains more than one Line and one of them is l. You can rewrite that fact to
all l: Line | l !in l.nextLine
to forbid all loops.
To forbid "two-way connections" between lines, you can write something like
all disj l1, l2: Line | l2 in l1.nextLine implies l1 !in l2.nextLine
(I'm not sure which one of your facts was supposed to do that)
If you want a Message to have more than 1 line, you should change the multiplicity of the formedOfLines to set, i.e.,
sig Message {
formedOfLines: set Line
}

Related

Alloy pred declaration: is there a difference between square brackets and parentheses?

The question probably has a yes/no answer. Consider the snippet:
sig A { my : lone B }
sig B { }
pred single1 [x:A]{ // defined using []
#x.my = 0
}
pred single2 (x:A){ // defined using ()
#x.my = 0
}
// these two runs produce the exact same results
run single1 for 3 but exactly 1 A
run single2 for 3 but exactly 1 A
check oneOfTheMostTrivialQuestionsOnStackOverflow { all x: A |
single1[x] iff single2[x] // pred calls use [], so as expected, single2(x) would cause a syntax error
} for 3000 but exactly 1 A // assertion holds :)
Are single1 and single2 exactly the same?
They seem to be, but am I missing something?
When we extended the syntax in Alloy 4, we changed the predicate invocations to []. My recollection is that we did it to make parsing easier, so that if you had a predicate P with no args, you could call it as just "P", and there would be no problems if it were followed by a formula in parens "P (...)". As Peter notes, it also seemed reasonable since it's similar to the relational lookup operator, and this makes sense especially for functions. We added the ability to declare predicates and functions with [] for consistency, but saw no reason to prevent () in decls (since there's no possible ambiguity there).
I think the parentheses were originally used for predicates and functions. However, they were changed in favour of the square brackets because it made it look more relational. I vaguely recall that Daniel Jackson explains this in his book.
That said, why ask because you seem to have proven it yourself? :-)

sig literals in Alloy

How can I write out a literal for a sig in Alloy? Consider the example below.
sig Foo { a: Int }
fact { #Foo = 1 }
If I execute this, I get
| this/Foo | a |
|----------|---|
| Foo⁰ | 7 |
In the evaluator, I know I can get a reference to the Foo instance with Foo$0 but how can I write a literal that represents the same value?
I've tried {a: 7}, but this is not equal to Foo$0. This is intentionally a trivial example, but I'm debugging a more complex model and I need to be able to write out literals of sigs with multiple fields.
Ah, this is one of the well hidden secrets! :-) Clearly in your model you cannot refer to atoms since the model is defining all possible values of those atoms. However, quite often you need your hands on some atom to reason about it. That is, you want to be able to name some objects.
The best way to get 'constants' is to create a predicate you call from a run clause. In this predicate, you define names for atoms you want to discuss. You only have to make sure this predicate is true.
pred collision[ car1, car2 : Car, road : Road ] {
// here you can reason about car1 and car2
}
run collision for 10
Another way is to create a quantification whenever you need to have some named objects:
run {
some car1, car2 : Car, road : Road {
// here you can reason about car1 and car2 and road
}
} for 10
There was a recent discussion to add these kinds of instances to the language so that Kodkod could take advantage of them. (It would allow faster solving and it is extremely useful for test cases of your model.) However, during a discussion this solution I presented came forward and it does not require any new syntax.
try to put a limitation for 'Integer' in the 'run' command. I mean :
sig Foo {a : Int}
fact{ #Foo = 1}
pred show {}
run show for 1 Foo, 2 Int

how is this sig being added to a relation in Alloy?

I am modeling a Google Docs-like inline commenting system in Alloy. Specifically, I'm modeling the UI interactions that the user can do. The constraints, in English, are that:
users can have any number of comments
users can have any number of comments composing at once
comments can be either composing or editing, not both
(eventually) users can expand one comment at a time to view it—text is truncated otherwise.
so far I have only modeled adding a new comment—or so I think! When I run the model below, I expect to see that Alloy cannot find any counterexamples, but it finds one where a comment is in both the composed and composing relations at a single time.
I think there may be something off in my mental model of how Alloy works in this case. I can't see how a comment would possibly be added to the composed relation here: I think init would set all the drafts to have empty relations there, and that the actions in Traces would preclude a comment ever being added to composed. BUT! I'm clearly wrong, since Alloy finds an example where composed is non-empty. Does anyone know what's actually happening here?
module inlineComments
open util/ordering [Time] as TimeOrdering
sig Time {}
sig Draft {
composing: set Comment -> Time,
composed: set Comment -> Time,
-- expanded: lone Comment -> Time,
}
sig Comment {}
-- What can we do with these?
pred newComment (t, t': Time, c: Comment, d: Draft) {
-- comment is not already known to us
c not in d.composing.t
c not in d.composed.t
-- start composing the comment
d.composing.t' = d.composing.t + c
}
pred init (t: Time) {
all d: Draft, c: Comment | c not in d.composing.t
all d: Draft, c: Comment | c not in d.composed.t
}
fact Traces {
init[TimeOrdering/first]
all t: Time - TimeOrdering/last |
let t' = TimeOrdering/next[t] |
some d: Draft, c: Comment |
newComment [t, t', c, d]
}
-- Is the world how we expect it to be?
assert validState {
-- comments cannot be composing and composed at the same time
all t: Time, d: Draft | d.composing.t & d.composed.t = none
}
check validState for 3 but 1 Draft
This is known as the "frame problem": you've specified that new comments can be put into composing, but not that nothing else happens! You have to make it explicit that the only way the system may change is via newComment. Here's one way you could do that:
fact Traces {
init[TimeOrdering/first]
all t: Time - TimeOrdering/last |
let t' = TimeOrdering/next[t] |
some d: Draft, c: Comment {
newComment [t, t', c, d]
d.composed.t = d.composed.t' -- d.composed doesn't change
}
}
Note this only works because you've exlicitly scoped to a maximum of 1 draft. If you test with two drafts, you also have to show that none of the drafts change in any way. If that will always be the case that there's only one Draft, you can write one sig Draft to enforce that.

How to know if returning an l-value when using `FALLBACK`?

How can I know if I actually need to return an l-value when using FALLBACK?
I'm using return-rw but I'd like to only use return where possible. I want to track if I've actually modified %!attrs or have only just read the value when FALLBACK was called.
Or (alternate plan B) can I attach a callback or something similar to my %!attrs to monitor for changes?
class Foo {
has %.attrs;
submethod BUILD { %!attrs{'bar'} = 'bar' }
# multi method FALLBACK(Str:D $name, *#rest) {
# say 'read-only';
# return %!attrs{$name} if %!attrs«$name»:exists;
# }
multi method FALLBACK(Str:D $name, *#rest) {
say 'read-write';
return-rw %!attrs{$name} if %!attrs«$name»:exists;
}
}
my $foo = Foo.new;
say $foo.bar;
$foo.bar = 'baz';
say $foo.bar;
This feels a bit like a X-Y question, so let's simplify the example, and see if that answers helps in your decisions.
First of all: if you return the "value" of a non-existing key in a hash, you are in fact returning a container that will auto-vivify the key in the hash when assigned to:
my %hash;
sub get($key) { return-rw %hash{$key} }
get("foo") = 42;
dd %hash; # Hash %hash = {:foo(42)}
Please note that you need to use return-rw here to ensure the actual container is returned, rather than just the value in the container. Alternately, you can use the is raw trait, which allows you to just set the last value:
my %hash;
sub get($key) is raw { %hash{$key} }
get("foo") = 42;
dd %hash; # Hash %hash = {:foo(42)}
Note that you should not use return in that case, as that will still de-containerize again.
To get back to your question:
I want to track if I've actually modified %!attrs or have only just read the value when FALLBACK was called.
class Foo {
has %!attrs;
has %!unexpected;
method TWEAK() { %!attrs<bar> = 'bar' }
method FALLBACK(Str:D $name, *#rest) is raw {
if %!attrs{$name}:exists {
%!attrs{$name}
}
else {
%!unexpected{$name}++;
Any
}
}
}
This would either return the container found in the hash, or record the access to the unknown key and return an immutable Any.
Regarding plan B, recording changes: for that you could use a Proxy object for that.
Hope this helps in your quest.
Liz's answer is full of useful info and you've accepted it but I thought the following might still be of interest.
How to know if returning an l-value ... ?
Let's start by ignoring the FALLBACK clause.
You would have to test the value. To deal with Scalars, you must test the .VAR of the value. (For non-Scalar values the .VAR acts like a "no op".) I think (but don't quote me) that Scalar|Array|Hash covers all the l-value super-types:
my \value = 42; # Int is an l-value is False
my \l-value-one = $; # Scalar is an l-value is True
my \l-value-too = #; # Array is an l-value is True
say "{.VAR.^name} is an l-value is {.VAR ~~ Scalar|Array|Hash}"
for value, l-value-one, l-value-too
How to know if returning an l-value when using FALLBACK?
Adding "when using FALLBACK" makes no difference to the answer.
How can I know if I actually need to return an l-value ... ?
Again, let's start by ignoring the FALLBACK clause.
This is a completely different question than "How to know if returning an l-value ... ?". I think it's the core of your question.
Afaik, the answer is, you need to anticipate how the returned value will be used. If there's any chance it'll be used as an l-value, and you want that usage to work, then you need to return an l-value. The language/compiler can't (or at least doesn't) help you make that decision.
Consider some related scenarios:
my $baz := foo.bar;
... (100s of lines of code) ...
$baz = 42;
Unless the first line returns an l-value, the second line will fail.
But the situation is actually much more immediate than that:
routine-foo = 42;
routine-foo is evaluated first, in its entirety, before the lhs = rhs expression is evaluated.
Unless the compiler's resolution of the routine-foo call somehow incorporated the fact that the very next thing to happen would be that the lhs will be assigned to, then there would be no way for a singly or multiply dispatched routine-foo to know whether it can safely return an r-value or must return an l-value.
And the compiler's resolution does not incorporate that. Thus, for example:
multi term:<bar> is rw { ... }
multi term:<bar> { ... }
bar = 99; # Ambiguous call to 'term:<bar>(...)'
I can imagine this one day (N years from now) being solved by a combination of allowing = to be an overloadable operator, robust macros that allow overloading of = being available, and routine resolution being modified so the above ambiguous call could do something equivalent to resolving to the is rw multi. But I doubt it will actually come to pass even with N=10. Perhaps there is another way but I can't think of one at the moment.
How can I know if I actually need to return an l-value when using FALLBACK?
Again, adding "when using FALLBACK" makes no difference to the answer.
I want to track if I've actually modified %!attrs or have only just read the value when FALLBACK was called.
When FALLBACK is called it doesn't know what context it's being called in -- r-value or l-value. Any modification comes after it has already returned.
In other words, whatever solution you come up with will being nothing to do per se with FALLBACK (even if you have to use it to implement some other aspect of whatever it is you're trying to do).
(Even if it were, I suspect trying to solve it via FALLBACK itself would just make matters worse. One can imagine writing two FALLBACK multis, one with an is rw trait, but, as explained above, my imagination doesn't stretch to that making any difference any time soon, if ever, and could only happen if the above imaginary things happened (the macros etc.) and the compiler was also modified to pay attention to the two FALLBACK multi variants, and I'm not at all meaning to suggest that that even makes sense.)
Plan B
Or (alternate plan B) can I attach a callback or something similar to my %!attrs to monitor for changes?
As Lizmat notes, that's the realm of Proxys. And thus your next SO question... :)

“P6opaque, Str” vs simple “Str” types in Perl 6

This is a follow-up to my previous question.
I am finally able to reproduce the error here:
my #recentList = prompt("Get recentList: e.g. 1 2 3: ").words || (2,4,6);
say "the list is: ", #recentList;
for #recentList -> $x {
say "one element is: ", $x;
say "element type is: ", $x.WHAT;
say "test (1,2,3).tail(\"2\") : ", (1,2,3).tail("2");
say ( (10.rand.Int xx 10) xx 15 ).map: { #($_.tail($x)); };
}
And the results are ok as long as I use the default list by just hitting return at the prompt and not entering anything. But if I enter a number, it gives this error:
Get recentList: e.g. 1 2 3: 2
the list is: [2]
one element is: 2
element type is: (Str)
test (1,2,3).tail("2") : (2 3)
This type cannot unbox to a native integer: P6opaque, Str
in block at intType.p6 line 9
in block <unit> at intType.p6 line 5
If tail("2") works, why does tail($x) fail? Also, in my original code, tail($x.Int) wouldn't correct the problem, but it did here.
This is at best a nanswer. It is a thus-far failed attempt to figure out this problem. I may have just wandered off into the weeds. But I'll publish what I have. If nothing else, maybe it can serve as a reminder that the first three steps below are sensible ones; thereafter I'm gambling on my ability to work my way forward by spelunking source code when I would probably make much faster and more reliable progress by directly debugging the compiler as discussed in the third step.
OK, the first step was an MRE. What you've provided was an E that was fully R and sufficiently M. :)
Step #2 was increasing the M (golfing). I got it down to:
Any.tail('0'); # OK
Any.tail('1'); # BOOM
Note that it can be actual values:
1.tail('1'); # BOOM
(1..2).tail('1'); # BOOM
But some values work:
(1,2).tail('1'); # OK
Step #3 probably should be to follow the instructions in Playing with the code of Rakudo Perl 6 to track the compiler's execution, eg by sticking says in its source code and recompiling it.
You may also want to try out App::MoarVM::Debug. (I haven't.)
Using these approaches you'll have the power to track with absolute precision what the compiler does for any code you throw at it. I recommend you do this even though I didn't. Maybe you can figure out where I've gone wrong.
In the following I trace this problem by just directly spelunking the Rakudo compiler's source code.
A search for "method tail" in the Rakudo sources yielded 4 matches. For my golf the matching method is a match in core/AnyIterableMethods.pm6.
The tail parameter $n clearly isn't a Callable so the pertinent line that continues our spelunking is Rakudo::Iterator.LastNValues(self.iterator,$n,'tail').
A search for this leads to this method in core/Iterator.pm6.
This in turn calls this .new routine.
These three lines:
nqp::if(
n <= 0, # must be HLL comparison
Rakudo::Iterator.Empty, # negative is just nothing
explain why '0' works. The <= operator coerces its operands to numeric before doing the numeric comparison. So '0' coerces to 0, the condition is True, the result is Rakudo::Iterator.Empty, and the Any.tail('0') yields () and doesn't complain.
The code that immediately follows the above three lines is the else branch of the nqp::if. It closes with nqp::create(self)!SET-SELF(iterator,n,f).
That in turn calls the !SET-SELF routine, which has the line:
($!lastn := nqp::setelems(nqp::list, $!size = size)),
Which attempts to assign size, which in our BOOM case is '1', to $!size. But $!size is declared as:
has int $!size;
Bingo.
Or is it? I don't know if I really have correctly tracked the problem down. I'm only spelunking the code in the github repo, not actually running an instrumented version of the compiler and tracing its execution, as discussed as the sensible step #3 for trying to figure out the problem you've encountered.
Worse, when I'm running a compiler it's an old one whereas the code I'm spelunking is the master...
Why does this work?
(*,*).tail('1') # OK
The code path for this will presumably be this method. The parameter $n isn't a Callable so the code path will run thru the path that uses the $n in the lines:
nqp::unless(
nqp::istype($n,Whatever) || $n == Inf,
$iterator.skip-at-least(nqp::elems($!reified) - $n.Int)
The $n == Inf shouldn't be a problem. The == will coerce its operands to numerics and that should take care of $n being '1'.
The nqp::elems($!reified) - $n.Int shouldn't be a problem either.
The nqp ops doc shows that nqp::elems always returns an int. So this boils down to an int - Int which should work.
Hmm.
A blame of these lines shows that the .Int in the last line was only added 3 months ago.
So, clutching at straws, what happens if one tries:
(my int $foo = 1) - '1' # OK
Nope, that's not the problem.
It seems the trail has grown cold or rather I've wandered off the actual execution path.
I'll publish what I've got. Maybe someone else can pick it up from here or I'll have another go in a day or three...

Resources