Allocating a data page in linux with NX bit turned off - linux

I would like to generate some machine code in my program and then run it. One way to do it would be to write out a .so file and then load it in the program but that seems too expensive.
IS there a way in linux for me to write out the code in my data pages and then set my function ointer there and just call it? I've seen something similar on windows where you can allocate a page with the NX protection turned off for that page, but I can't find a similar OS call for linux.

The mmap(2) (with munmap(2)) and mprotect(2) syscalls are the elementary operations to do that. Recall that syscalls are elementary operations from the point of view of an application. You want PROT_EXEC
You could just strace any dynamically linked executable to get a clue about how you might call them, since the dynamic linker ld.so is using them.
Generating a shared object might be less expensive than you imagine. Actually, generating C code, running the compiler, then dlopen-ing the resulting shared object has some sense, even when you work interactively. My MELT domain specific language (to extend GCC) is doing this. Recall that you can do a big lot of dlopen-s without issues.
If you want to generate machine code in memory, you could use GNU lightning (quick generation of slow machine code), libjit from dotgnu (generate less bad machine code), LuaJit, asmjit (x86 or amd64 specific), LLVM (slowly generate optimized machine code). BTW, the SBCL Common Lisp implementation is dynamically compiling to memory and produces good machine code at runtime (and there is also all the JIT for JVMs doing that).

Related

Can we convert elf from a cpu architecture to another, in linux? [duplicate]

How I can run x86 binaries (for example .exe file) on arm?As I see on Wikipedia,I need to convert binary data for the emulated platform into binary data suitable for execution on the targeted platform.but question is:How I can do it?I need to open file in hex editor and change?Or something else?
To successfully do this, you'd have to do two things.. one relatively easy, one very hard. Neither of which you want to do by hand in a hex editor.
Convert the machine code from x86 to ARM. This is the easy one, because you should be able to map each x86 opcode to one or more ARM opcodes. There are different ways to do this, some more efficient than others, but it can be done with a pretty straightforward mapping.
Remap function calls (and other jumps). This one is hard, because monkeying with the opcodes is going to change all the offsets for the jump and return points. If you have dynamically linked libraries (.so), and we assume that all the libraries are available at exactly the same version in both places (a sketchy assumption at best), you'd have to remap the loads.
It's essentially a machine->machine compiler and linker.
So, can you do it? Sure.
Is it easy? No.
There may be a commercial tool out there, but I'm not aware of it.
You can not do this with a binary;note1 here binary means an object with no symbol information like an elf file. Even with an elf file, this is difficult to impossible. The issue is determining code from data. If you resolve this issue, then you can make de-compilers and other tools.
Even if you haven an elf file, a compiler will insert constants used in the code in the text segment. You have to look at many op-codes and do a reverse basic block to figure out where a function starts and ends.
A better mechanism is to emulate the x86 on the ARM. Here, you can use JIT technology to do the translation as encountered, but you approximately double code space. Also, the code will execute horribly. The ARM has 16 registers and the x86 is register starved (usually it has hidden registers). A compilers big job is to allocate these registers. QEMU is one technology that does this. I am unsure if it goes in the x86 to ARM direction; and it will have a tough job as noted.
Note1: The x86 has an asymmetric op-code sizing. In order to recognize a function prologue and epilogue, you would have to scan an image multiple times. To do this, I think the problem would be something like O(n!) where n is the bytes of the image, and then you might have trouble with in-line assembler and library routines coded in assembler. It maybe possible, but it is extremely hard.
To run an ARM executable on an X86 machine all you need is qemu-user.
Example:
you have busybox compiled for AARCH64 architecture (ARM64) and you want to run it on an X86_64 linux system:
Assuming a static compile, this runs arm64 code on x86 system:
$ qemu-aarch64-static ./busybox
And this runs X86 code on ARM system:
$ qemu-x86_64-static ./busybox
What I am curioous is if there is a way to embed both in a single program.
read x86 binary file as utf-8,then copy from ELF to last character�.Then go to arm binary and delete as you copy with x86.Then copy x86 in clip-board to the head.i tried and it's working.

Program that runs on windows and linux

Is it possible to write a program (make executable) that runs on windows and linux without any interpreters?
Will it be able to take input and print output to console?
A program that runs directly on hardware, pure machine code as this should be possible in theory
edit:
Ok, file formats are different, system calls are different
But how hard or is it possible for kernel developers to introduce another executable format called raw for fun and science? Maybe raw program wont be able to report back but it should be able to inflict heavy load on cpu and raise its temperature as evidence of running for example
Is it possible to write a program (make executable) that runs on windows and linux without any interpreters?
in practice, no !
Levine's book Linkers and loaders explain why it is not possible in practice.
On recent Linux, an executable has the elf(5) format.
On Windows, it has some PE format.
The very first bytes of executables are different. And these two OSes have different system calls. The Linux ones are listed in syscalls(2).
And even on Linux, in practice, an executable is usually dynamically linked and depends on shared objects (and they are different from one distribution to the next one, so it is likely that an executable built for Debian/Testing won't run on Redhat). You could use the objdump(1), readelf(1), ldd(1) commands to inspect it, and strace(1) with gdb(1) to observe its runtime behavior.
Portability of software is often achieved by publishing it (in source form) with some open source license. The burden of recompilation is then on the shoulders of users.
In practice, real software (in particular those with a graphical user interface) depends on lots of OS specific and computer specific resources (e.g. fonts, screen size, colors) and user preferences.
A possible approach could be to have a small OS specific software base which generate machine code at runtime, like e.g. SBCL or LuaJit does. You could also consider using asmjit. Another approach is to generate opaque or obfuscated C or C++ code at runtime, compile it (with the system compiler), and load it -at runtime- as a plugin. On Linux, use dlopen(3) with dlsym(3).
Pitrat's book: Artificial Beings, the conscience of a conscious machine describes a software system (some artificial mathematician) which generates all of its C source code (half a million lines). Contact me by email to basile#starynkevitch.net for more.
The Wine emulator allows you to run some (but not all) simple Windows executables on Linux. The WSL layer is rumored to enable you to run some Linux executable on Windows.
PS. Even open source projects like RefPerSys or GCC or Qt may be (and often are) difficult to build.
No, mainly because executable formats are different, but...
With some care, you can use mostly the same code to create different executables, one for Linux and another one for windows. Depending on what you consider an interpreter Java also runs on both Windows and Linux (in a Java Virtual Machine though).
Also, it is possible to create scripts that can be interpreted both by PowerShell and by the Bash shell, such that running one of these scripts could launch a proper application compiled for the OS of the user.
You might require the windows user to run on WSL, which is maybe an ugly workaround but allows you to have the same executable for both Windows and Linux users.

Linux kernel assembly and logic

My question is somewhat weird but I will do my best to explain.
Looking at the languages the linux kernel has, I got C and assembly even though I read a text that said [quote] Second iteration of Unix is written completely in C [/quote]
I thought that was misleading but when I said that kernel has assembly code I got 2 questions of the start
What assembly files are in the kernel and what's their use?
Assembly is architecture dependant so how can linux be installed on more than one CPU architecture
And if linux kernel is truly written completely in C than how can it get GCC needed for compiling?
I did a complete find / -name *.s
and just got one assembly file (asm-offset.s) somewhere in the /usr/src/linux-headers-`uname -r/
Somehow I don't think that is helping with the GCC working, so how can linux work without assembly or if it uses assembly where is it and how can it be stable when it depends on the arch.
Thanks in advance
1. Why assembly is used?
Because there are certain things then can be done only in assembly and because assembly results in a faster code. For eg, "you can get access to unusual programming modes of your processor (e.g. 16 bit mode to interface startup, firmware, or legacy code on Intel PCs)".
Read here for more reasons.
2. What assembly file are used?
From: https://www.kernel.org/doc/Documentation/arm/README
"The initial entry into the kernel is via head.S, which uses machine
independent code. The machine is selected by the value of 'r1' on
entry, which must be kept unique."
From https://www.ibm.com/developerworks/library/l-linuxboot/
"When the bzImage (for an i386 image) is invoked, you begin at ./arch/i386/boot/head.S in the start assembly routine (see Figure 3 for the major flow). This routine does some basic hardware setup and invokes the startup_32 routine in ./arch/i386/boot/compressed/head.S. This routine sets up a basic environment (stack, etc.) and clears the Block Started by Symbol (BSS). The kernel is then decompressed through a call to a C function called decompress_kernel (located in ./arch/i386/boot/compressed/misc.c). When the kernel is decompressed into memory, it is called. This is yet another startup_32 function, but this function is in ./arch/i386/kernel/head.S."
Apart from these assembly files, lot of linux kernel code has usage of inline assembly.
3. Architecture dependence?
And you are right about it being architecture dependent, that's why the linux kernel code is ported to different architecture.
Linux porting guide
List of supported arch
Things written mainly in assembly in Linux:
Boot code: boots up the machine and sets it up in a state in which it can start executing C code (e.g: on some processors you may need to manually initialize caches and TLBs, on x86 you have to switch to protected mode, ...)
Interrupts/Exceptions/Traps entry points/returns: there you need to do very processor-specific things, e.g: saving registers and reenabling interrupts, and eventually restoring registers and properly returning to user mode. Some exceptions may be handled entirely in assembly.
Instruction emulation: some CPU models may not support certain instructions, may not support unaligned data access, or may not have an FPU. An option is using emulation when getting the corresponding exception.
VDSO: the VDSO is a virtual library that the kernel maps into userspace. It allows e.g: selecting the optimal syscall sequence for the current CPU (on x86 use sysenter/syscall instead of int 0x80 if available), and implementing certain system calls without requiring a context switch (e.g: gettimeofday()).
Atomic operations and locks: Maybe in a future some of these could be written using C11 support for atomic operations.
Copying memory from/to user mode: Besides using an optimized copy, these check for out-of-bounds access.
Optimized routines: the kernel has optimized version of some routines, e.g: crypto routines, memset, clear_page, csum_copy (checksum and copy to another place IP data in one pass), ...
Support for suspend/resume and other ACPI/EFI/firmware thingies
BPF JIT: newer kernels include a JIT compiler for BPF expressions (used for example by tcpdump, secmode mode 2, ...)
...
To support different architectures, Linux has assembly code (re-)written for each architecture it supports (and sometimes, there are several implementations of some code for different platforms using the same CPU architecture). Just look at all the subdirectories under arch/
Assembly is needed for a couple of reasons.
There are many instructions that are needed for the operation of an operating system that have no C equivalent, at least on most processors. A good example on Intel x86/64 processors is the iret instruciton, which returns from hardware/software interrupts. These interrupts are key to handling hardware events (like a keyboard press) and system calls from programs on older processors.
A computer does not start up in a state that is immediately ready for execution of C code. For an Intel example, when execution gets to the startup routine the processor may not be in 32-bit mode (or 64-bit mode), and the stack required by C also may not be ready. There are some other features present in some processors (like paging) which need to be turned on from assembly as well.
However, most of the Linux kernel is written in C, which interfaces with some platform specific C/assembly code through standardized interfaces. By separating the parts in this way, most of the logic of the Linux kernel can be shared between platforms. The build system simply compiles the platform independent and dependent parts together for specific platforms, which results in different executable kernel files for different platforms (and kernel configurations for that matter).
Assembly code in the kernel is generally used for low-level hardware interaction that can't be done directly from C. They're like a platform- specific foundation that's used by higher-level parts of the kernel that are written in C.
The kernel source tree contains assembly code for a variety of systems. When you compile a kernel for a particular type of system (such as an x86 PC), only the appropriate assembly code for that platform is included in the build process.
Linux is not the second version of Unix (or Unix in general). It is Unix compatible, but Unix and Linux have separate histories and, in terms of code base (of their kernels), are completely separate. Linus Torvald's idea was to write an open source Unix.
Some of the lower level things like some of the architecture dependent parts of memory management are done in assembly. The old (but still available) Linux kernel API for x86, int 0x80, is implemented in assembly. There are probably other places in the kernel that are implemented in assembly, but I don't know any others.
When you compile the kernel, you select an architecture to target. Depending on the target, the right assembly files for that architecture are included in the build.
The reason you don't find anything is because you're searching the headers, not the sources. Download a tar ball from kernel.org and search that.

Linking 32-bit library to 64-bit program

I have a 32-bit .so binary-only library and I have to generate 64-bit program that uses it.
Is there a way to wrap or convert it, so it can be used with 64-bit program?
No. You can't directly link to 32bit code inside of a 64bit program.
The best option is to compile a 32bit (standalone) program that can run on your 64bit platform (using ia32), and then use a form of inter-process communication to communicate to it from your 64bit program.
For an example of using IPC to run 32-bit plugins from 64-bit code, look at the open source NSPluginWrapper.
It is possible, but not without some serious magic behind the scenes and you will not like the answer. Either emulate a 32 bit CPU (no I am not kidding) or switch the main process back to 32 bit. Emulating may be slow though.
This is a proof of concept of the technique.
Then keep a table of every memory access to and from the 32 bit library and keep them in sync. It is very hard to get to a theoretical completeness, but something workable should be pretty easy, but very tedious.
In most cases, I believe two processes and then IPC between the two may actually be easiest, as suggested othwerwise.

Why is the startup of an App on linux slower when using shared libs?

On the embedded device I'm working on, the startup time is an important issue. The whole application consists of several executables that use a set of libraries. Because space in FLASH memory is limited we'd like to use shared libraries.
The application workes as usual when compiled and linked with shared libraries and the amount of FLASH memory is reduced as expected.
The difference to the version that is linked to static libs is that the startup time of the application is about 20s longer and I have no idea why.
The application runs on an ARM9 CPU at 180 MHz with Linux 2.6.17 OS,
16 MB FLASH (JFFS File System) and 32 MB RAM.
Bacause shared libraries have to be linked to at runtime, usually by dlopen() or something similar. There's no such step for static libraries.
Edit: some more detail. dlopen has to perform the following tasks.
Find the shared library
Load it into memory
Recursively load all dependencies (and their dependencies....)
Resolve all symbols
This requires quite a lot of IO operations to accomplish.
In a statically linked program all of the above is done at compile time, not runtime. Therefore it's much faster to load a statically linked program.
In your case, the difference is exaggerated by the relatively slow hardware your code has to run on.
This is a fine example of the classic tradeoff of speed and space.
You can statically link all your executables so that they are faster but then they will take more space
OR
You can have shared libraries that take less space but also more time to load.
So decide what you want to sacrifice.
There are many factors for this difference (OS, compiler e.t.c) but a good list of reasons can be found here. Basically shared libraries were created for space reasons and much of the "magic" involved to make them work takes a performance hit.
(As a historical note the original Netscape navigator on Linux/Unix was a statically linked big fat executable).
This may help others with similar problems:
The reason why startup took so long in my case was, that the default setting of the GCC is to export all symbols inside of a library.
A big improvement is to set a compiler setting "-fvisibility=hidden".
All symbols that the lib has to export have to be augmented with the statement
__attribute__ ((visibility("default")))
see gcc wiki
and the very fine article how to write shared libraries
Ok, I have learned now that the usage of shared libraries has it's disadvatages concerning speed. I found this article about dynamic linking and loading enlighting. The loading process seems to be much lengthier than I have expected.
Interesting.. typically loading time for a shared library is unnoticeable from a fat app that is statically linked. So I can only surmise that the system is either very slow to load a library from flash memory, or the library that is loaded is being checked in some way (eg .NET apps run a checksum for all loaded dlls, reducing startup time considerably in some cases). It could be that the shared libraries are being loaded as-needed, and unloaded afterwards which could indicate a configuration problem.
So, sorry I can't help say why, but I think its an issue with your ARM device/OS. Have you tried instrumenting the startup code, or statically linking with 1 of the most commonly-used libraries to see if that makes a large difference. Also put the shared libs in the same directory as the app to reduce the time it takes to search the FS for the lib.
One option which seems obvious to me, is to statically link the several programs all into a single binary. That way you continue to share as much code as possible (probably more than before), but you will also avoid the overhead of the dynamic linker AND save the space of having the dynamic linker on the system at all.
It's pretty easy to combine several executables into the same one, you normally just examine argv and decide which routine to call based on that.

Resources