Program that runs on windows and linux - linux

Is it possible to write a program (make executable) that runs on windows and linux without any interpreters?
Will it be able to take input and print output to console?
A program that runs directly on hardware, pure machine code as this should be possible in theory
edit:
Ok, file formats are different, system calls are different
But how hard or is it possible for kernel developers to introduce another executable format called raw for fun and science? Maybe raw program wont be able to report back but it should be able to inflict heavy load on cpu and raise its temperature as evidence of running for example

Is it possible to write a program (make executable) that runs on windows and linux without any interpreters?
in practice, no !
Levine's book Linkers and loaders explain why it is not possible in practice.
On recent Linux, an executable has the elf(5) format.
On Windows, it has some PE format.
The very first bytes of executables are different. And these two OSes have different system calls. The Linux ones are listed in syscalls(2).
And even on Linux, in practice, an executable is usually dynamically linked and depends on shared objects (and they are different from one distribution to the next one, so it is likely that an executable built for Debian/Testing won't run on Redhat). You could use the objdump(1), readelf(1), ldd(1) commands to inspect it, and strace(1) with gdb(1) to observe its runtime behavior.
Portability of software is often achieved by publishing it (in source form) with some open source license. The burden of recompilation is then on the shoulders of users.
In practice, real software (in particular those with a graphical user interface) depends on lots of OS specific and computer specific resources (e.g. fonts, screen size, colors) and user preferences.
A possible approach could be to have a small OS specific software base which generate machine code at runtime, like e.g. SBCL or LuaJit does. You could also consider using asmjit. Another approach is to generate opaque or obfuscated C or C++ code at runtime, compile it (with the system compiler), and load it -at runtime- as a plugin. On Linux, use dlopen(3) with dlsym(3).
Pitrat's book: Artificial Beings, the conscience of a conscious machine describes a software system (some artificial mathematician) which generates all of its C source code (half a million lines). Contact me by email to basile#starynkevitch.net for more.
The Wine emulator allows you to run some (but not all) simple Windows executables on Linux. The WSL layer is rumored to enable you to run some Linux executable on Windows.
PS. Even open source projects like RefPerSys or GCC or Qt may be (and often are) difficult to build.

No, mainly because executable formats are different, but...
With some care, you can use mostly the same code to create different executables, one for Linux and another one for windows. Depending on what you consider an interpreter Java also runs on both Windows and Linux (in a Java Virtual Machine though).
Also, it is possible to create scripts that can be interpreted both by PowerShell and by the Bash shell, such that running one of these scripts could launch a proper application compiled for the OS of the user.
You might require the windows user to run on WSL, which is maybe an ugly workaround but allows you to have the same executable for both Windows and Linux users.

Related

How is programming in rtems different than Linux?

I am new to programmming in rtem and was wondering how are the two, rtems and linux, are different in terms of programming. I understand rtems is an real time operating system but if you were to make a hello world app, wouldn’t the program be the same?
Note that your question is quite generic. There are a lot of detail differences.
One of the biggest is the format of your binary: Most RTEMS binaries are statically linked together. You only have one big binary containing your system and application. There is some dynamic loading supported but it's not the case used by most users.
As already mentioned my n.m. in the comments RTEMS has a lot of the POSIX API (at least the embedded sub set). So you can use a lot of the same API like you do on Linux.
A big differences is that RTEMS has a global address space (on most targets). So you don't have a separation between tasks. That makes pointer errors a bit harder to debug.
Also a difference: Most embedded systems are targeted for long running applications. In such applications (regardless whether you are on Linux or on RTEMS or on any other system) you should be careful to clean up your stuff (close files, free memory, ...). In Linux (or other desktop class systems) you have processes and the kernel cleans up all resources after your process exits. Although you can create threads in RTEMS no one cleans up after a thread exits.
The POSIX attribute defaults for threads are not specified in the standard and may vary between RTEMS and Linux.

Is a core dump executable by itself?

The Wikipedia page on Core dump says
In Unix-like systems, core dumps generally use the standard executable
image-format:
a.out in older versions of Unix,
ELF in modern Linux, System V, Solaris, and BSD systems,
Mach-O in OS X, etc.
Does this mean a core dump is executable by itself? If not, why not?
Edit: Since #WumpusQ.Wumbley mentions a coredump_filter in a comment, perhaps the above question should be: can a core dump be produced such that it is executable by itself?
In older unix variants it was the default to include the text as well as data in the core dump but it was also given in the a.out format and not ELF. Today's default behavior (in Linux for sure, not 100% sure about BSD variants, Solaris etc.) is to have the core dump in ELF format without the text sections but that behavior can be changed.
However, a core dump cannot be executed directly in any case without some help. The reason for that is that there are two things missing from a simple core file. One is the entry point, the other is code to restore the CPU state to the state at or just before the dump occurred (by default also the text sections are missing).
In AIX there used to be a utility called undump but I have no idea what happened to it. It doesn't exist in any standard Linux distribution I know of. As mentioned above (#WumpusQ) there's also an attempt at a similar project for Linux mentioned in above comments, however this project is not complete and doesn't restore the CPU state to the original state. It is, however, still good enough in some specific debugging cases.
It is also worth mentioning that there exist other ELF formatted files that cannot be executes as well which are not core files. Such as object files (compiler output) and .so (shared object) files. Those require a linking stage before being run to resolve external addresses.
I emailed this question the creator of the undump utility for his expertise, and got the following reply:
As mentioned in some of the answers there, it is possible to include
the code sections by setting the coredump_filter, but it's not the
default for Linux (and I'm not entirely sure about BSD variants and
Solaris). If the various code sections are saved in the original
core-dump, there is really nothing missing in order to create the new
executable. It does, however, require some changes in the original
core file (such as including an entry point and pointing that entry
point to code that will restore CPU registers). If the core file is
modified in this way it will become an executable and you'll be able
to run it. Unfortunately, though, some of the states are not going to
be saved so the new executable will not be able to run directly. Open
files, sockets, pips, etc are not going to be open and may even point
to other FDs (which could cause all sorts of weird things). However,
it will most probably be enough for most debugging tasks such running
small functions from gdb (so that you don't get a "not running an
executable" stuff).
As other guys said, I don't think you can execute a core dump file without the original binary.
In case you're interested to debug the binary (and it has debugging symbols included, in other words it is not stripped) then you can run gdb binary core.
Inside gdb you can use bt command (backtrace) to get the stack trace when the application crashed.

Allocating a data page in linux with NX bit turned off

I would like to generate some machine code in my program and then run it. One way to do it would be to write out a .so file and then load it in the program but that seems too expensive.
IS there a way in linux for me to write out the code in my data pages and then set my function ointer there and just call it? I've seen something similar on windows where you can allocate a page with the NX protection turned off for that page, but I can't find a similar OS call for linux.
The mmap(2) (with munmap(2)) and mprotect(2) syscalls are the elementary operations to do that. Recall that syscalls are elementary operations from the point of view of an application. You want PROT_EXEC
You could just strace any dynamically linked executable to get a clue about how you might call them, since the dynamic linker ld.so is using them.
Generating a shared object might be less expensive than you imagine. Actually, generating C code, running the compiler, then dlopen-ing the resulting shared object has some sense, even when you work interactively. My MELT domain specific language (to extend GCC) is doing this. Recall that you can do a big lot of dlopen-s without issues.
If you want to generate machine code in memory, you could use GNU lightning (quick generation of slow machine code), libjit from dotgnu (generate less bad machine code), LuaJit, asmjit (x86 or amd64 specific), LLVM (slowly generate optimized machine code). BTW, the SBCL Common Lisp implementation is dynamically compiling to memory and produces good machine code at runtime (and there is also all the JIT for JVMs doing that).

Is there something similar to NanoBSD in Linux

NanoBSD is a script that makes light, small and in-memory FreeBSD copy. It is useful in embedded systems. Is there something similar to NanoBSD in Linux? Specially a feature like Everything is read-only at run-time as it mentioned here .
A lot of toolchain / system build systems build Linux root filesystems which are designed to run completely out of a ramdisc (rootfs / tmpfs). This means that everything is read/write at runtime, but it does not persist across reboots (a persistent FS can of course, be mounted as a non-root FS).
The most well known of these is Busybox (with or without uclibc), which ships with various scripts to build very small-footprint Linux-based embedded systems (root FS is typically a few Mb only; just add a kernel). Busybox/Linux is not the same as GNU/Linux, but it is fairly similar - most things are simpler or have fewer options; some features are entirely absent or can be disabled at compile-time.
Linux is NOT an Operating system like FreeBSD, rather it is a kernel. You can choose to layer either GNU C library and tools (which I think all major general-purpose distributions do) or something else - which is mostly used for smaller systems, including uclibc, Android etc.
There are literally hundreds of toolchains, build environments and embedded distros of Linux, some only a couple of megabytes in size. Many also support some or many of the different processors Linux runs on (i386 and friends, ARM, Power, ...).
To get you started a couple of projects I find interesting: OpenWrt and OpenEmbedded, and lpclinux, Linux for NXP LPC3xxx ARM processors but there are really hundreds of them.
Some other resources
A very good source that (also) touches a number of issues specific to embedded systems is Linux from scratch. And this pdf gives some insight in the different available filesystems for an embedded Linux system.
i would take a look at TinyCore-Linux.
which isn't really ro but nearly the same Concept and i think there is also a was to get the OS/Binary Part ro were the config part is writeable.

Is there any difference between executable binary files between distributions?

As all Linux distributions use the same kernel, is there any difference between their executable binary files?
If yes, what are the main differences? Or does that mean we can build a universal linux executable file?
All Linux distributions use the same binary format ELF, but there is still some differences:
different cpu arch use different instruction set.
the same cpu arch may use different ABI, ABI defines how to use the register file, how to call/return a routine. Different ABI can not work together.
Even on same arch, same ABI, this still does not mean we can copy one binary file in a distribution to another. Since most binary files are not statically linked, so they depends on the libraries under the distribution, which means different distribution may use different versions or different compilation configuration of libraries.
So if you want your program to run on all distribution, you may have to statically link a version that depends on the kernel's syscall only, even this you can only run a specified arch.
If you really want to run a program on any arch, then you have to compile binaries for all arches, and use a shell script to start up the right one.
All Linux ports (that is, the Linux kernel on different processors) use ELF as the file format for executables and libraries. A specific ELF binary is labeled with a single architecture/OS on which it can run (although some OSes have compatibility to run ELF binaries from other OSes).
Most ports have support for the older a.out format. (Some processors are new enough that there have never existed any a.out executables for them.)
Some ports support other executable file formats as well; for example, the PA-RISC port has support for HP-UX's old SOM executables, and the μcLinux (nonmmu) ports support their own FLAT format.
Linux also has binfmt_misc, which allows userspace to register handlers for arbitrary binary formats. Some distributions take advantage of this to be able to execute Windows, .NET, or Java applications -- it's really still launching an interpreter, but it's completely transparent to the user.
Linux on Alpha has support for loading Intel binaries, which are run via the em86 emulator.
It's possible to register binfmt_misc for executables of other architectures, to be run with qemu-user.
In theory, one could create a new format -- perhaps register a new "architecture" in ELF -- for fat binaries. Then the kernel binfmt loader would have to be taught about this new format, and you wouldn't want to miss the ld-linux.so dynamic linker and the whole build toolchain. There's been little interest in such a feature, and as far as I know, nobody is working on anything like it.
Almost all linux program files use the ELF standard.
Old Unixes also used COFF format. You may still find executables from times of yore in this format. Linux still has support for it (I don't know if it's compiled in current distros, though).
If you want to create a program that runs an all Linux distributions, you can consider using scripting languages (like Python and Perl) or a platform independent programming language like Java.
Programs written in scripting languages are complied at execution time, which means they are always compiled to match the platform they are executed on, and, hence, should always work (given that the libraries are set up properly).
Programs written in Java, on the other hand, are compiled before distributing them, but can be executed on any Linux distribution as long as it has a Java VM installed.
Furthermore, programs written in Java can be run on other operating systems like MS Windows and Mac OS.
The same is true for many programs written in Python and Perl; however, whether a Python or Perl program will work on another operating system depends on what libraries are used by that program and whether these libraries are available on the other operating systems.

Resources