i=0
EDA="xx7p2"
while read line
do
echo "i is --- $i"
echo " PACKAGE IS - --$EDA--"
#echo $line "\n"
if (( $i > 0 ))
then
package=$(echo $line | awk '{print $1}')
echo "EDA PACKAGE IN LOOP IS ---$Eda_package---"
if [ "$package" == "$EDA" ] ; then
#then
well_bias=$(echo $line | awk '{print $2}')
biasmap=$(echo $line | awk '{print $3}')
unified=$(echo $line | awk '{print $4}')
echo "eda pack --$package bias is --$wel biasmap is --$biasmap unified- --$unified"
fi
fi
i=$((i+1))
done < config.list
Here the statements inside the second if statement is not executed even if the two variables are same. Am I missing something here?
Make a simplified version of your problem to get it nailed down.
I can't reproduce your problem with this sample script:
#!/bin/bash
i=$1
a=$2
while read line
do
if (( $i > 0 ))
then
echo "1st if "+$i
if [ "$a" == "foo" ] ; then
echo "2nd if"
fi
fi
i=$((i+1))
done < nfoo.sh
called nfoo.sh and calling it ./nfoo.sh 4 bar, ./nfoo.sh -4 bar, ./nfoo.sh 4 foo and ./nfoo.sh -4 foo.
Might your error be in the package-assignement? You don't need awk for such a simple task. For a single word, to just extract the first word, you would use echo ${line/ */} while I see nothing wrong in your awk-statement.
Since you extract more arguments, I would suggest an array:
#!/bin/bash
i=$1
a=$2
while read line
do
if (( $i > 0 ))
then
arr=($line)
echo "1st if "+$i
if [ "if" == "${arr[0]}" ] ; then
echo "2nd if: " $line
fi
fi
i=$((i+1))
done < nfoo.sh
Btw.: Where is the else, the headline is talking about?
UPDATE: based on more testing with the small script below:
Having the $ as part of the string in package variable was a problem for me. If I escape it with a \$ I get it to work with the correct comparison operator mentioned below.
Use this for comparison (note the space before/after the =)
if [ "$package" = "$EDA" ] ; then
Without the space the expression seems to evaluate always to true. (Also, as an aside, using == without spaces before/after will result in an [: 11: $EDAx: unexpected operator)
I used this small script for testing, you can use to verify your own constructs, hope it's helpful. This works correctly as shown
#!/bin/bash
package="\$EDA"
echo $package
if [ "$package" = "\$EDA" ] ; then
echo "The same"
else
echo "Not the same"
fi
Note1: I added the else to be certain of the outcome of the comparison, as your script doesn't contain any else
Note2: It's always better to explicitly specify what shell to run rather than to depend on some external implicit environment settings, so I would recommend you add the #!/bin/bash to your script, it certainly won't hurt.
Other Comparison Operator from the Advanced Bash-Scripting Guide shows:
string comparison
=
is equal to
if [ "$a" = "$b" ]
Note the whitespace framing the =.
if [ "$a"="$b" ] is not equivalent to the above.
== is equal to
if [ "$a" == "$b" ]
This is a synonym for =.
Related
I'm unable to get numeric comparisons working:
echo "enter two numbers";
read a b;
echo "a=$a";
echo "b=$b";
if [ $a \> $b ];
then
echo "a is greater than b";
else
echo "b is greater than a";
fi;
The problem is that it compares the number from the first digit on, i.e., 9 is bigger than 10, but 1 is greater than 09.
How can I convert the numbers into a type to do a true comparison?
In Bash, you should do your check in an arithmetic context:
if (( a > b )); then
...
fi
For POSIX shells that don't support (()), you can use -lt and -gt.
if [ "$a" -gt "$b" ]; then
...
fi
You can get a full list of comparison operators with help test or man test.
Like this:
#!/bin/bash
a=2462620
b=2462620
if [ "$a" -eq "$b" ]; then
echo "They're equal";
fi
Integers can be compared with these operators:
-eq # Equal
-ne # Not equal
-lt # Less than
-le # Less than or equal
-gt # Greater than
-ge # Greater than or equal
See this cheatsheet.
There is also one nice thing some people might not know about:
echo $(( a < b ? a : b ))
This code will print the smallest number out of a and b
In Bash I prefer doing this as it addresses itself more as a conditional operation unlike using (( )) which is more of arithmetic.
[[ n -gt m ]]
Unless I do complex stuff like
(( (n + 1) > m ))
But everyone just has their own preferences. Sad thing is that some people impose their unofficial standards.
You can also do this:
[[ 'n + 1' -gt m ]]
Which allows you to add something else which you could do with [[ ]] besides arithmetic stuff.
The bracket stuff (e.g., [[ $a -gt $b ]] or (( $a > $b )) ) isn't enough if you want to use float numbers as well; it would report a syntax error. If you want to compare float numbers or float number to integer, you can use (( $(bc <<< "...") )).
For example,
a=2.00
b=1
if (( $(bc <<<"$a > $b") )); then
echo "a is greater than b"
else
echo "a is not greater than b"
fi
You can include more than one comparison in the if statement. For example,
a=2.
b=1
c=1.0000
if (( $(bc <<<"$b == $c && $b < $a") )); then
echo "b is equal to c but less than a"
else
echo "b is either not equal to c and/or not less than a"
fi
That's helpful if you want to check if a numeric variable (integer or not) is within a numeric range.
One-line solution.
a=2
b=1
[[ ${a} -gt ${b} ]] && echo "true" || echo "false"
gt reference: https://www.gnu.org/software/bash/manual/html_node/Bash-Conditional-Expressions.html
&& reference: https://www.gnu.org/software/bash/manual/html_node/Shell-Arithmetic.html
[[...]] construct reference: https://www.gnu.org/software/bash/manual/bash.html#index-_005b_005b
${} reference: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_06_02 (2.6.2)
The format for parameter expansion is as follows:
${expression}
where expression consists of all characters until the matching '}'.
Any '}' escaped by a or within a quoted string, and
characters in embedded arithmetic expansions, command substitutions,
and variable expansions, shall not be examined in determining the
matching '}'.
The simplest form for parameter expansion is:
${parameter}
This code can also compare floats. It is using AWK (it is not pure Bash). However, this shouldn't be a problem, as AWK is a standard POSIX command that is most likely shipped by default with your operating system.
$ awk 'BEGIN {return_code=(-1.2345 == -1.2345) ? 0 : 1; exit} END {exit return_code}'
$ echo $?
0
$ awk 'BEGIN {return_code=(-1.2345 >= -1.2345) ? 0 : 1; exit} END {exit return_code}'
$ echo $?
0
$ awk 'BEGIN {return_code=(-1.2345 < -1.2345) ? 0 : 1; exit} END {exit return_code}'
$ echo $?
1
$ awk 'BEGIN {return_code=(-1.2345 < 2) ? 0 : 1; exit} END {exit return_code}'
$ echo $?
0
$ awk 'BEGIN {return_code=(-1.2345 > 2) ? 0 : 1; exit} END {exit return_code}'
$ echo $?
To make it shorter for use, use this function:
compare_nums()
{
# Function to compare two numbers (float or integers) by using AWK.
# The function will not print anything, but it will return 0 (if the comparison is true) or 1
# (if the comparison is false) exit codes, so it can be used directly in shell one liners.
#############
### Usage ###
### Note that you have to enclose the comparison operator in quotes.
#############
# compare_nums 1 ">" 2 # returns false
# compare_nums 1.23 "<=" 2 # returns true
# compare_nums -1.238 "<=" -2 # returns false
#############################################
num1=$1
op=$2
num2=$3
E_BADARGS=65
# Make sure that the provided numbers are actually numbers.
if ! [[ $num1 =~ ^-?[0-9]+([.][0-9]+)?$ ]]; then >&2 echo "$num1 is not a number"; return $E_BADARGS; fi
if ! [[ $num2 =~ ^-?[0-9]+([.][0-9]+)?$ ]]; then >&2 echo "$num2 is not a number"; return $E_BADARGS; fi
# If you want to print the exit code as well (instead of only returning it), uncomment
# the awk line below and comment the uncommented one which is two lines below.
#awk 'BEGIN {print return_code=('$num1' '$op' '$num2') ? 0 : 1; exit} END {exit return_code}'
awk 'BEGIN {return_code=('$num1' '$op' '$num2') ? 0 : 1; exit} END {exit return_code}'
return_code=$?
return $return_code
}
$ compare_nums -1.2345 ">=" -1.2345 && echo true || echo false
true
$ compare_nums -1.2345 ">=" 23 && echo true || echo false
false
If you have floats, you can write a function and then use that. For example,
#!/bin/bash
function float_gt() {
perl -e "{if($1>$2){print 1} else {print 0}}"
}
x=3.14
y=5.20
if [ $(float_gt $x $y) == 1 ] ; then
echo "do stuff with x"
else
echo "do stuff with y"
fi
I solved this by using a small function to convert version strings to plain integer values that can be compared:
function versionToInt() {
local IFS=.
parts=($1)
let val=1000000*parts[0]+1000*parts[1]+parts[2]
echo $val
}
This makes two important assumptions:
The input is a "normal SemVer string"
Each part is between 0-999
For example
versionToInt 12.34.56 # --> 12034056
versionToInt 1.2.3 # --> 1002003
Example testing whether npm command meets the minimum requirement...
NPM_ACTUAL=$(versionToInt $(npm --version)) # Capture npm version
NPM_REQUIRED=$(versionToInt 4.3.0) # Desired version
if [ $NPM_ACTUAL \< $NPM_REQUIRED ]; then
echo "Please update to npm#latest"
exit 1
fi
Just adding to all the above answers:
If you have more than one expression in single if statement, you can do something like this:
if (( $a % 2 == 0 )) && (( $b % 2 != 0));
then
echo "What you want to do"
fi
Hope this helps!
I'm unable to get numeric comparisons working:
echo "enter two numbers";
read a b;
echo "a=$a";
echo "b=$b";
if [ $a \> $b ];
then
echo "a is greater than b";
else
echo "b is greater than a";
fi;
The problem is that it compares the number from the first digit on, i.e., 9 is bigger than 10, but 1 is greater than 09.
How can I convert the numbers into a type to do a true comparison?
In Bash, you should do your check in an arithmetic context:
if (( a > b )); then
...
fi
For POSIX shells that don't support (()), you can use -lt and -gt.
if [ "$a" -gt "$b" ]; then
...
fi
You can get a full list of comparison operators with help test or man test.
Like this:
#!/bin/bash
a=2462620
b=2462620
if [ "$a" -eq "$b" ]; then
echo "They're equal";
fi
Integers can be compared with these operators:
-eq # Equal
-ne # Not equal
-lt # Less than
-le # Less than or equal
-gt # Greater than
-ge # Greater than or equal
See this cheatsheet.
There is also one nice thing some people might not know about:
echo $(( a < b ? a : b ))
This code will print the smallest number out of a and b
In Bash I prefer doing this as it addresses itself more as a conditional operation unlike using (( )) which is more of arithmetic.
[[ n -gt m ]]
Unless I do complex stuff like
(( (n + 1) > m ))
But everyone just has their own preferences. Sad thing is that some people impose their unofficial standards.
You can also do this:
[[ 'n + 1' -gt m ]]
Which allows you to add something else which you could do with [[ ]] besides arithmetic stuff.
The bracket stuff (e.g., [[ $a -gt $b ]] or (( $a > $b )) ) isn't enough if you want to use float numbers as well; it would report a syntax error. If you want to compare float numbers or float number to integer, you can use (( $(bc <<< "...") )).
For example,
a=2.00
b=1
if (( $(bc <<<"$a > $b") )); then
echo "a is greater than b"
else
echo "a is not greater than b"
fi
You can include more than one comparison in the if statement. For example,
a=2.
b=1
c=1.0000
if (( $(bc <<<"$b == $c && $b < $a") )); then
echo "b is equal to c but less than a"
else
echo "b is either not equal to c and/or not less than a"
fi
That's helpful if you want to check if a numeric variable (integer or not) is within a numeric range.
One-line solution.
a=2
b=1
[[ ${a} -gt ${b} ]] && echo "true" || echo "false"
gt reference: https://www.gnu.org/software/bash/manual/html_node/Bash-Conditional-Expressions.html
&& reference: https://www.gnu.org/software/bash/manual/html_node/Shell-Arithmetic.html
[[...]] construct reference: https://www.gnu.org/software/bash/manual/bash.html#index-_005b_005b
${} reference: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_06_02 (2.6.2)
The format for parameter expansion is as follows:
${expression}
where expression consists of all characters until the matching '}'.
Any '}' escaped by a or within a quoted string, and
characters in embedded arithmetic expansions, command substitutions,
and variable expansions, shall not be examined in determining the
matching '}'.
The simplest form for parameter expansion is:
${parameter}
This code can also compare floats. It is using AWK (it is not pure Bash). However, this shouldn't be a problem, as AWK is a standard POSIX command that is most likely shipped by default with your operating system.
$ awk 'BEGIN {return_code=(-1.2345 == -1.2345) ? 0 : 1; exit} END {exit return_code}'
$ echo $?
0
$ awk 'BEGIN {return_code=(-1.2345 >= -1.2345) ? 0 : 1; exit} END {exit return_code}'
$ echo $?
0
$ awk 'BEGIN {return_code=(-1.2345 < -1.2345) ? 0 : 1; exit} END {exit return_code}'
$ echo $?
1
$ awk 'BEGIN {return_code=(-1.2345 < 2) ? 0 : 1; exit} END {exit return_code}'
$ echo $?
0
$ awk 'BEGIN {return_code=(-1.2345 > 2) ? 0 : 1; exit} END {exit return_code}'
$ echo $?
To make it shorter for use, use this function:
compare_nums()
{
# Function to compare two numbers (float or integers) by using AWK.
# The function will not print anything, but it will return 0 (if the comparison is true) or 1
# (if the comparison is false) exit codes, so it can be used directly in shell one liners.
#############
### Usage ###
### Note that you have to enclose the comparison operator in quotes.
#############
# compare_nums 1 ">" 2 # returns false
# compare_nums 1.23 "<=" 2 # returns true
# compare_nums -1.238 "<=" -2 # returns false
#############################################
num1=$1
op=$2
num2=$3
E_BADARGS=65
# Make sure that the provided numbers are actually numbers.
if ! [[ $num1 =~ ^-?[0-9]+([.][0-9]+)?$ ]]; then >&2 echo "$num1 is not a number"; return $E_BADARGS; fi
if ! [[ $num2 =~ ^-?[0-9]+([.][0-9]+)?$ ]]; then >&2 echo "$num2 is not a number"; return $E_BADARGS; fi
# If you want to print the exit code as well (instead of only returning it), uncomment
# the awk line below and comment the uncommented one which is two lines below.
#awk 'BEGIN {print return_code=('$num1' '$op' '$num2') ? 0 : 1; exit} END {exit return_code}'
awk 'BEGIN {return_code=('$num1' '$op' '$num2') ? 0 : 1; exit} END {exit return_code}'
return_code=$?
return $return_code
}
$ compare_nums -1.2345 ">=" -1.2345 && echo true || echo false
true
$ compare_nums -1.2345 ">=" 23 && echo true || echo false
false
If you have floats, you can write a function and then use that. For example,
#!/bin/bash
function float_gt() {
perl -e "{if($1>$2){print 1} else {print 0}}"
}
x=3.14
y=5.20
if [ $(float_gt $x $y) == 1 ] ; then
echo "do stuff with x"
else
echo "do stuff with y"
fi
I solved this by using a small function to convert version strings to plain integer values that can be compared:
function versionToInt() {
local IFS=.
parts=($1)
let val=1000000*parts[0]+1000*parts[1]+parts[2]
echo $val
}
This makes two important assumptions:
The input is a "normal SemVer string"
Each part is between 0-999
For example
versionToInt 12.34.56 # --> 12034056
versionToInt 1.2.3 # --> 1002003
Example testing whether npm command meets the minimum requirement...
NPM_ACTUAL=$(versionToInt $(npm --version)) # Capture npm version
NPM_REQUIRED=$(versionToInt 4.3.0) # Desired version
if [ $NPM_ACTUAL \< $NPM_REQUIRED ]; then
echo "Please update to npm#latest"
exit 1
fi
Just adding to all the above answers:
If you have more than one expression in single if statement, you can do something like this:
if (( $a % 2 == 0 )) && (( $b % 2 != 0));
then
echo "What you want to do"
fi
Hope this helps!
Say you have the user enter in a number 0-3 and want to test it. The most common way seems to be:
[[ $var =~ ^[0-3]$ ]]
But how would you use this with:
test expression
My initial attempt doesn't evaluate correctly, e.g.
read -p "Enter selection [0-3] > "
if test $REPLY == '^[0-3]$' ; then
...
It just evaluates the if statement as false.
test is equivalent to the [ ] structure, but not to [[ ]], which is an extended version. The regex =~ is only available in the extended test, so for simple test or [ ] you have to pull the regex evaluation from elsewhere.
One fix is grep. This pipeline will catch and print the matches:
echo "$REPLY" | grep '^[0-3]$'
Using test with a string evaluates positively if the string is non-empty. Compare these two:
test "" && echo ok
and
test "a" && echo ok
Knowing this, it's now easy to build a compound test from the both elements.
test "$(echo "$REPLY" | grep '^[0-3]$')"
And this can be applied to the script:
read -p "Enter selection [0-3] > "
if test "$(echo "$REPLY" | grep '^[0-3]$')"; then
...
fi
You can use a regex in Bash like this:
echo -n "Your answer> "
read REPLY
if [[ $REPLY =~ ^[0-9]+$ ]]; then
echo Numeric
else
echo Non-numeric
fi
Please check the post Using Bash's regular expressions.
I'm writing a script in Unix where I have to check whether the first character in a string is "/" and if it is, branch.
For example, I have a string:
/some/directory/file
I want this to return 1, and:
server#10.200.200.20:/some/directory/file
to return 0.
There are many ways to do this. You could use wildcards in double brackets:
str="/some/directory/file"
if [[ $str == /* ]]; then echo 1; else echo 0; fi
You can use substring expansion:
if [[ ${str:0:1} == "/" ]] ; then echo 1; else echo 0; fi
Or a regex:
if [[ $str =~ ^/ ]]; then echo 1; else echo 0; fi
Consider the case statement as well which is compatible with most sh-based shells:
case $str in
/*)
echo 1
;;
*)
echo 0
;;
esac
$ foo="/some/directory/file"
$ [ ${foo:0:1} == "/" ] && echo 1 || echo 0
1
$ foo="server#10.200.200.20:/some/directory/file"
$ [ ${foo:0:1} == "/" ] && echo 1 || echo 0
0
printf '%c "$s"
This was mentioned by brunoais in a comment, and it might be the best option since:
it is likely POSIX. TODO confirm. The following quote from https://pubs.opengroup.org/onlinepubs/9699919799/utilities/printf.html suggests this:
It shall not be considered an error if an argument operand is not completely used for a b, c, or s conversion.
it can extract the character to a variable unlike using case directly
unlike cut -c1 printf is a Bash built-in so it could be a little bit faster
myvar=abc
first_char="$(printf '%c' "$myvar")"
if [ "$first_char" = a ]; then
echo 'starts with a'
else
echo 'does not start with a'
fi
cut -c1
This is POSIX, and unlike case:
myvar=abc
first_char="$(printf '%s' "$myvar" | cut -c1)"
if [ "$first_char" = a ]; then
echo 'starts with a'
else
echo 'does not start with a'
fi
awk substr is another POSIX command, but less efficient alternative:
printf '%s' "$myvar" | awk '{print substr ($0, 0, 1)}'
printf '%s' is to avoid problems with escape characters: Bash printf literal verbatim string, e.g.,
myvar='\n'
printf '%s' "$myvar" | cut -c1
outputs \ as expected.
${::} does not seem to be POSIX.
See also: How can I extract the first two characters of a string in shell scripting?
Code:
place="Place"
fchar=${place:0:1}
echo $fchar
Output:
P
I am trying to write a script in bash that check the validity of a user input.
I want to match the input (say variable x) to a list of valid values.
what I have come up with at the moment is:
for item in $list
do
if [ "$x" == "$item" ]; then
echo "In the list"
exit
fi
done
My question is if there is a simpler way to do this,
something like a list.contains(x) for most programming languages.
Say list is:
list="11 22 33"
my code will echo the message only for those values since list is treated as an array and not a string,
all the string manipulations will validate 1 while I would want it to fail.
[[ $list =~ (^|[[:space:]])$x($|[[:space:]]) ]] && echo 'yes' || echo 'no'
or create a function:
contains() {
[[ $1 =~ (^|[[:space:]])$2($|[[:space:]]) ]] && exit(0) || exit(1)
}
to use it:
contains aList anItem
echo $? # 0: match, 1: failed
how about
echo $list | grep -w -q $x
you could either check the output or $? of above line to make the decision.
grep -w checks on whole word patterns. Adding -q prevents echoing the list.
Matvey is right, but you should quote $x and consider any kind of "spaces" (e.g. new line) with
[[ $list =~ (^|[[:space:]])"$x"($|[[:space:]]) ]] && echo 'yes' || echo 'no'
so, i.e.
# list_include_item "10 11 12" "2"
function list_include_item {
local list="$1"
local item="$2"
if [[ $list =~ (^|[[:space:]])"$item"($|[[:space:]]) ]] ; then
# yes, list include item
result=0
else
result=1
fi
return $result
}
end then
`list_include_item "10 11 12" "12"` && echo "yes" || echo "no"
or
if `list_include_item "10 11 12" "1"` ; then
echo "yes"
else
echo "no"
fi
Note that you must use "" in case of variables:
`list_include_item "$my_list" "$my_item"` && echo "yes" || echo "no"
IMHO easiest solution is to prepend and append the original string with a space and check against a regex with [[ ]]
haystack='foo bar'
needle='bar'
if [[ " $haystack " =~ .*\ $needle\ .* ]]; then
...
fi
this will not be false positive on values with values containing the needle as a substring, e.g. with a haystack foo barbaz.
(The concept is shamelessly stolen form JQuery's hasClass()-Method)
You can use (* wildcards) outside a case statement, too, if you use double brackets:
string='My string';
if [[ $string == *My* ]]
then
echo "It's there!";
fi
If it isn't too long; you can just string them between equality along a logical OR comparison like so.
if [ $ITEM == "item1" -o $ITEM == "item2" -o $ITEM == "item3" ]; then
echo In the list
fi
I had this exact problem and while the above is ugly it is more obvious what is going on than the other generalized solutions.
If your list of values is to be hard-coded in the script, it's fairly simple to test using case. Here's a short example, which you can adapt to your requirements:
for item in $list
do
case "$x" in
item1|item2)
echo "In the list"
;;
not_an_item)
echo "Error" >&2
exit 1
;;
esac
done
If the list is an array variable at runtime, one of the other answers is probably a better fit.
There's a cleaner way to check if string is in the list:
if [[ $my_str = #(str1|str2|str3) ]]; then
echo "string found"
fi
Consider exploiting the keys of associative arrays. I would presume this outperforms both regex/pattern matching and looping, although I haven't profiled it.
declare -A list=( [one]=1 [two]=two [three]='any non-empty value' )
for value in one two three four
do
echo -n "$value is "
# a missing key expands to the null string,
# and we've set each interesting key to a non-empty value
[[ -z "${list[$value]}" ]] && echo -n '*not* '
echo "a member of ( ${!list[*]} )"
done
Output:
one is a member of ( one two three )
two is a member of ( one two three )
three is a member of ( one two three )
four is *not* a member of ( one two three )
If the list is fixed in the script, I like the following the best:
validate() {
grep -F -q -x "$1" <<EOF
item 1
item 2
item 3
EOF
}
Then use validate "$x" to test if $x is allowed.
If you want a one-liner, and don't care about whitespace in item names, you can use this (notice -w instead of -x):
validate() { echo "11 22 33" | grep -F -q -w "$1"; }
Notes:
This is POSIX sh compliant.
validate does not accept substrings (remove the -x option to grep if you want that).
validate interprets its argument as a fixed string, not a regular
expression (remove the -F option to grep if you want that).
Sample code to exercise the function:
for x in "item 1" "item2" "item 3" "3" "*"; do
echo -n "'$x' is "
validate "$x" && echo "valid" || echo "invalid"
done
I find it's easier to use the form echo $LIST | xargs -n1 echo | grep $VALUE as illustrated below:
LIST="ITEM1 ITEM2"
VALUE="ITEM1"
if [ -n "`echo $LIST | xargs -n1 echo | grep -e \"^$VALUE`$\" ]; then
...
fi
This works for a space-separated list, but you could adapt it to any other delimiter (like :) by doing the following:
LIST="ITEM1:ITEM2"
VALUE="ITEM1"
if [ -n "`echo $LIST | sed 's|:|\\n|g' | grep -e \"^$VALUE`$\"`" ]; then
...
fi
Note that the " are required for the test to work.
Thought I'd add my solution to the list.
# Checks if element "$1" is in array "$2"
# #NOTE:
# Be sure that array is passed in the form:
# "${ARR[#]}"
elementIn () {
# shopt -s nocasematch # Can be useful to disable case-matching
local e
for e in "${#:2}"; do [[ "$e" == "$1" ]] && return 0; done
return 1
}
# Usage:
list=(11 22 33)
item=22
if elementIn "$item" "${list[#]}"; then
echo TRUE;
else
echo FALSE
fi
# TRUE
item=44
elementIn $item "${list[#]}" && echo TRUE || echo FALSE
# FALSE
The shell built-in compgen can help here. It can take a list with the -W flag and return any of the potential matches it finds.
# My list can contain spaces so I want to set the internal
# file separator to newline to preserve the original strings.
IFS=$'\n'
# Create a list of acceptable strings.
accept=( 'foo' 'bar' 'foo bar' )
# The string we will check
word='foo'
# compgen will return a list of possible matches of the
# variable 'word' with the best match being first.
compgen -W "${accept[*]}" "$word"
# Returns:
# foo
# foo bar
We can write a function to test if a string equals the best match of acceptable strings. This allows you to return a 0 or 1 for a pass or fail respectively.
function validate {
local IFS=$'\n'
local accept=( 'foo' 'bar' 'foo bar' )
if [ "$1" == "$(compgen -W "${accept[*]}" "$1" | head -1)" ] ; then
return 0
else
return 1
fi
}
Now you can write very clean tests to validate if a string is acceptable.
validate "blah" || echo unacceptable
if validate "foo" ; then
echo acceptable
else
echo unacceptable
fi
Prior answers don't use tr which I found to be useful with grep. Assuming that the items in the list are space delimited, to check for an exact match:
echo $mylist | tr ' ' '\n' | grep -F -x -q "$myitem"
This will return exit code 0 if the item is in the list, or exit code 1 if it isn't.
It's best to use it as a function:
_contains () { # Check if space-separated list $1 contains line $2
echo "$1" | tr ' ' '\n' | grep -F -x -q "$2"
}
mylist="aa bb cc"
# Positive check
if _contains "${mylist}" "${myitem}"; then
echo "in list"
fi
# Negative check
if ! _contains "${mylist}" "${myitem}"; then
echo "not in list"
fi
Late to the show? Following very easy variant was not clearly mentioned yet. I use case for checking simple lists, which is a general Bourne Shell idiom not relying on anything external nor extended:
haystack='a b c'
needle='b'
case " $haystack " in (*" $needle "*) :;; (*) false;; esac
Please note the use of the separator (here: SPC) to correcyly delimit the pattern: At the beginning and end of " $haystack " and likewise in the test of " $needle ".
This statement returns true ($?=0) in case $needle is in $haystack, false otherwise.
Also you can test for more than one $needle very easily. When there are several similar cases like
if (haystack.contains(needle1)) { run1() } elif (haystack.contains(needle2)) { run2() } else { run3() }
you can wrap this into the case, too:
case " $haystack " in (*" $needle1 "*) run1;; (*" $needle2 "*) run2;; (*) run3;; esac
and so on
This also works for all lists with values which do not include the separator itself, like comma:
haystack=' a , b , c '
needle=' b '
case ",$haystack," in (*",$needle,"*) :;; (*) false;; esac
Note that if values can contain anything including the separator sequence (except NUL, as shells do not suport NUL in variables as you cannot pass arguments containing NUL to commands) then you need to use arrays. Arrays are ksh/bashisms and not supported by "ordinary" POSIX/Bourne shells. (You can work around this limitation using $# in POSIX-Shells, but this is something completely different than what was aked here.)
Can the (*) false part be left away?
No, as this is the critical return value. By default case returns true.
Yes if you do not need the return value and put your processing at the location of the :
Why the :;;
We could also write true;;, but I am used to use : instead of true because it is shorter and faster to type
Also I consider not writing anything bad practice, as it is not obvious to everybody that the default return value of case is true.
Also "leaving out" the command usually indicates "something was forgotten here". So putting a redundant ":" there clearly indicates "it is intended to do nothing else than return true here".
In bash you can also use ksh/bashisms like ;& (fallthroug) or ;;& (test other patterns) to express if (haystack.contains(needle1)) { run1(); }; if (haystack.contains(needle2)) { run2(); }
Hence usually case is much more maintainable than other regex constructs. Also it does not use regex, it only use shell patterns, which might even be faster.
Reusable function:
: Needle "list" Seperator_opt
NeedleListSep()
{
if [ 3 -gt $# ];
then NeedleListSep "$1" "$2" " ";
else case "$3$2$3" in (*"$3$1$3"*) return 0;; esac; return 1;
fi;
}
In bash you can simplify this to
: Needle "list" Seperator_opt
NeedleListSep()
{
local s="${3-" "}";
case "$s$2$s" in (*"$s$1$s"*) return 0;; esac; return 1;
}
Use like this
Test() {
NeedleListSep "$1" "a b c" && echo found $1 || echo no $1;
NeedleListSep "$1" "a,b,c" ',' && echo found $1 || echo no $1;
NeedleListSep "$1" "a # b # c" ' # ' && echo found $1 || echo no $1;
NeedleListSep "$1" "abc" '' && echo found $1 || echo no $1;
}
Test a
Test z
As shown above, this also works for degerated cases where the separator is the empty string (so each character of the list is a needle). Example:
Test
returns
no
no
no
found
As the empty string is cleary part of abc in case your separator is the empty string, right?
Note that this function is Public Domain as there is absolutely nothing to it which can be genuinely copyrighted.
An alternative solution inspired by the accepted response, but that uses an inverted logic:
MODE="${1}"
echo "<${MODE}>"
[[ "${MODE}" =~ ^(preview|live|both)$ ]] && echo "OK" || echo "Uh?"
Here, the input ($MODE) must be one of the options in the regular expression ('preview', 'live', or 'both'), contrary to matching the whole options list to the user input. Of course, you do not expect the regular expression to change.
Examples
$ in_list super test me out
NO
$ in_list "super dude" test me out
NO
$ in_list "super dude" test me "super dude"
YES
# How to use in another script
if [ $(in_list $1 OPTION1 OPTION2) == "NO" ]
then
echo "UNKNOWN type for param 1: Should be OPTION1 or OPTION2"
exit;
fi
in_list
function show_help()
{
IT=$(CAT <<EOF
usage: SEARCH_FOR {ITEM1} {ITEM2} {ITEM3} ...
e.g.
a b c d -> NO
a b a d -> YES
"test me" how "test me" -> YES
)
echo "$IT"
exit
}
if [ "$1" == "help" ]
then
show_help
fi
if [ "$#" -eq 0 ]; then
show_help
fi
SEARCH_FOR=$1
shift;
for ITEM in "$#"
do
if [ "$SEARCH_FOR" == "$ITEM" ]
then
echo "YES"
exit;
fi
done
echo "NO"
Assuming TARGET variable can be only 'binomial' or 'regression', then following would do:
# Check for modeling types known to this script
if [ $( echo "${TARGET}" | egrep -c "^(binomial|regression)$" ) -eq 0 ]; then
echo "This scoring program can only handle 'binomial' and 'regression' methods now." >&2
usage
fi
You could add more strings into the list by separating them with a | (pipe) character.
Advantage of using egrep, is that you could easily add case insensitivity (-i), or check more complex scenarios with a regular expression.
This is almost your original proposal but almost a 1-liner. Not that complicated as other valid answers, and not so depending on bash versions (can work with old bashes).
OK=0 ; MP_FLAVOURS="vanilla lemon hazelnut straciatella"
for FLAV in $MP_FLAVOURS ; do [ $FLAV == $FLAVOR ] && { OK=1 ; break; } ; done
[ $OK -eq 0 ] && { echo "$FLAVOR not a valid value ($MP_FLAVOURS)" ; exit 1 ; }
I guess my proposal can still be improved, both in length and style.
Simple oneliner...
if [[ " 11 22 33 " == *" ${x} "* ]]; then echo "${x} is in the list"; fi;
Add before fi: else echo "${x} is NOT in the list";
The script below implements contains function for a list.
function contains {
local target=$1
shift
printf '%s\n' "$#" | grep -x -q "$target"
out=$?
(( out = 1 - out ))
return $out
}
If you convert a string based on white space into a list and use it, it seems to be solved as follows.
list="11 22 33"
IFS=" " read -ra parsed_list <<< "$list"
# parsed_list would be ("11" "22" "33")
contains "11" "${parsed_list[#]}"
echo $? # 1
contains "22" "${parsed_list[#]}"
echo $? # 1
contains "1" "${parsed_list[#]}"
echo $? # 0
contains "11 22" "${parsed_list[#]}"
echo $? # 0