I am interested in programming assembler for Intel x86 architecture and on Linux. After some initial research this lead me to believe out of FASM, NASM and MASM I wanted NASM.
From this point on, how easy is it to write a NASM assembler "text file" on Linux and execute it? Is it relatively simple? What packages (gcc etc) do I need to ensure are installed? Does anyone know any walkthrough guides? I havent been able to find anything yet. Does it matter which linux distro?
You don't say what flavor of Linux. On Ubuntu, install is as simple as sudo apt-get install nasm. After that, you might start at the NASM Project's links page, which will lead you to approximately a zillion tutorials.
The best one that I have found on the web, is John Carter's PC Assembly. It aim NASM, it's comprehensive, yet conscious and also it aims at Linux and Nasm.
All you need to know to start, can be found in first few chapters. Also it's been published under GPL licence .
Related
here is an interesting question that, if answered positively, would make cross compiling a whole lot easier.
Since gcc is written in C++, would it be possible to recompile the Linux gcc compiler on Windows MinGW G++ or VSC++ compiler, so that the resulting Windows executable would be able to compile c code to linux programs?
If so, what would be needed to do that?
So to simplify, here is what I want to do.
mingw32-g++ gcc.cpp -o gcc.exe
The command will probably not work because it would probably have been done before if it were that easy. What I ask is if this concept would be even possible.
Edit: thanks and expanding the question to NVCC
fvu was able to answer the question for the gcc compiler (please use the answer button next time), so if you had the same question you can thank him (or her) .
As an extention to the question, would it be possible to edit or recompile nvcc or the things it uses so that nvcc.exe can create a linux program from CUDA C code? I read that the windows variant of nvcc can only use the Visual Studio cl.exe and not MinGW or CygWin.
Is it possible to create linux programs with cl.exe? And if so, could that be used to generate linux programs with nvcc.exe?
Read the chapter on cross compiling in the gcc manual, gcc's architecture makes it quite easy to set up a toolchain where the target is different from the development machine.
I never went the exact route you describe, but I have built toolchains under Windows that target ARM9 embedded Linux machines, works like a charm - using cygwin btw. Look here for a gentle introduction. Also very useful info here.
I am not going to comment on what can be done with respect to nvcc, CUDA is somewhere on my (long) list of stuff to tinker with...
Now, can cl generate Linux binaries? The answer to this question is "sort of" : as long as the target processor is from a processor family that's supported by cl, the object files generated by it should probably not contain anything that would inhibit its execution on Linux, as they'll just contain machine code. That's the theory. However:
as Linux uses another executable format, you will need a Windows-hosted linker that understands Windows style object files (afaik, COFF), and links them together to a Linux style (ELF) executable. I never heard of such a beast, although in theory it could exist
the startup code (a tiny program that wraps around your main function) will also be different and needs to be written
and some more, eg library related issues
So, the practical answer is no, although it might be a nice summer project for a bored student :)
I was reading an article about cross-compiling for OSX on linux, but it was quite hard to understand.
What tools do I need? And what configurations are necessary?
Are there any tools for creating packages too?
First you need odcctools, which contains assembler and linker and such (like binutils but capable of handling the Mach-O object format). Then you need the system libraries from the official SDK. You can download it from Apple, but must agree to some stuff and become a member to do so. And finally good old gcc. Quite easy in theory, but in reallity a horrible mess. The easiest way to go (that I know of) is to use I'm Cross!.
Update: I found a newer and better updated method called xchain. It requires more manual work than I'm Cross! thou.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 8 years ago.
Improve this question
I have no prior knowledge of assembly programming, and would like to learn how to code x86 assembly on a Linux platform. However, I'm having a hard time finding a good resource to teach myself with.
The Art of Assembly book looks good, but it teaches HLA. I'm not interested in having to learn one way, then relearning it all over again. It also seems like RISC architectures have better resources for assembly, but unfortunately I do not have a RISC processor to learn with. Does anyone have any suggestions?
http://asm.sf.net has some material on architectures besides x86.
If you are interested in RISC architectures, you could run Linux on Qemu. Qemu emulates several RISC architectures like PowerPC, ARM and MIPS. You might be able to find a ready to use Qemu hard disk image here.
Another way to experiment with RISC architectures would be to use gdb's built-in simulator.
I found Assembly language step-by-step to be a very good resource. It has a section in the back thats aimed at Linux assembly too.
Probably nothing much better than The Art of Assembly Language Programming and the other resources at that web site.
There are really two parts to learning assembly-level programming: the basic concepts, and then specific architectures. If you haven't had any exposure to asm programming, I strongly suggest you get the basics down first with a simple, small architecture, even tho' it likely is not directly applicable to any real hardware. If many folks are pointing to a particular resource like "The Art of...", take another look at it, use it to learn what an architecture is, how to use the basic tools (asm, debugger, disasm, etc).
Once those are out of the way, then you can start looking into more advanced instruction sets. The x86 architecture and instruction set are pretty convoluted and there are many obscure ways to twist your brain - learn something simple before you tackle that.
Even though many people I know at school hated this book, I will link it anyway:
http://www.amazon.com/Professional-Assembly-Language-Programmer/dp/0764579010
The main reason I used this book is because it uses x86 on Linux with the GNU assembler. That last point helped since I had to use that assembler in our school's lab, and if you aren't aware - the syntax is different from Intel syntax.
Also, I would just add that learning how high level languages are compiled into assembly language really helped me move along.
x86 assembly is really an intel language, best learnt with an intel chip and a windows platform which does DOS
If you have something like WinXP there used to be a DOS interpreter which showed a user the basics of asm and allowed a user to reverse a command and tweak the code in real time, then assemble the code into a block which could be run on the interpreter
It was called the "Ketman Interpreter"
It was for DOS asm only but it was pretty unique because it let you see what happens with all the registers and flags and allows a totally clueless individual to get a handle on the logic
Try http://www.emu8086.com which is a windows-hosted 8086 emulator with an assembler and debugger. It comes with a tutorial.
I learned x86 assembler from a book about the 8086 (which I can't remember the name of at present... it was obviously quite old, and purple. if you're really interested I can dig it up when I get home). That will only teach you 16 bit stuff, for the more advanced 32 bit stuff I read some tutorials online. I've never done 64 bit. At least at first, the OS you're targeting probably won't matter, as you're too low-level... the BIOS is all you really care about. If you don't have access to a test system, an emulator is probably a good choice, as others have mentioned, but you can also build yourself an 8088 or 8086 without too much trouble from discrete parts. You can find tutorials and circuit diagrams online easily. It should cost less than $50 and it's a great learning experience -- you're essentially building a motherboard from scratch.
If you're not too attached to x86 assembly and want to learn RISC, I recommend the Microchip PIC microcontrollers. You can pick up a starter kit for less than $50 (the PICKit 1, which I have, even works under Linux). They have extensive documentation and plenty of third-party tutorials aimed at hobbyists.
don't forget to grab a copy of Guide-Assembly-Language-Programming-in-Linux book.
The Art of Assembly Language Programming
I wonder if someone managed to compile the Linux kernel with some other compiler than gcc. Or if someone have ever tried? Question may seem to be silly or academic, but it arose when I thought about answers to: Are C++ int operations atomic on the mips architecture
It seems that the atomicity of some operations depends not only on the cpu architecture, but also on used compiler. So, I wonder if in Linux world some compiler other than gcc even exists.
Linux explicitly depends on some gcc extensions, so any other compiler must be compatible with the needed extensions, in that case.
This is not a "no", since it's of course not impossible for a separate compiler vendor/developer to track gcc's extensions, just a data point that might help you search.
At some point tcc would process and run the linux kernel source. SO that would be a yes, I guess.
::Hat tip to ephemient in the comments.::
The LLVM developers are trying to compile it with clang. The meta-bug on compiling the Linux kernel with clang has more details (the dependency tree for that meta-bug shows how little seems to be left).
There have been some efforts (and patches) to compile an early version of the 2.6 kernel with icc.
Yup. I've done this. See [cfe-dev] Clang builds a working Linux Kernel (Boots to RL5 with SMP, networking and X, self hosts).
IBM's compiler was able to do it some Linux versions ago, but I'm not sure about now, nor am I sure of how well IBM optimized the kernel as instructed. All I know is, they got it to build.
As Linux is self hosting (with its own libc) and has been developed from the start with gcc (and gcc cross compilers), its sort of silly to use anything else.
I think mainly, playing nice with preprocessor macros and instructed optimizations is the biggest obstacle (not even getting into a departure from gas), as GNU has basically written the book on the above, and extended it. Beyond that, Linux tunes its optimizations to work with gcc, for instance, don't get caught using 'volatile' in the kernel without a damn good reason. Using inline and actually having the compiler agree is another challenge.
Linus is the first one to call GCC an &*#$ hole, which makes for a better compiler.
This is why we have the great GNU/Linux debate.
Many, many, many years ago, it was actually possible to compile the kernel with g++, and as far as I remember part of the motivation was because C++ had stronger type check, not necessarily to have g++ to produce object files. But as Neil Butterworth have pointed out, Linus is not particular fond of C++, and there is zero chance that this ever will be possible again.
EKOPath 4 Compiler, not now. but probably with some minor patches
https://github.com/path64/repositories
http://www.pathscale.com/ekopath-compiler-suite
I am just now working on compile Linux kernel using Open64 for MIPS archtecture, and some other guys are now just working for make Open64 can build for X86 arch. Now the kernel can partly run, and still have Run fail errors.
However for the atomic problem, at least i have not come up with it. And I do not think it is really a problem.The reasons are:
The Linux kernel have already been a collection of source code, which can successfully build with GCC, so it is only the compiler's problem if it can not build it, or the built kernel runs fail.
If a compiler want to successfully build Linux kernel, it should obide the GNU C Extension, and this extension will give a clear discription of what a atomic operation is, so such a compile only need to generate code according to this extension.
My non-technical guess: The Linux Kernel can't currently (2009) be compiled with any compiler other than the GNU compiler, gcc.
I say this on the basis that I've heard Richard Stallman, with some conviction, say Linux should be called GNU/Linux because the kernel is "only 1 part of the operating system" and I'm guessing he would not be able to say this if the kernel was non-dependant on GNU (e.g. a tonne of embedded devices run a Linux OS without any GNU software).
As I said, just a guess, let me know if I'm wrong...
Is there a way that I use MASM under Linux. Even tough NASM is quite popular under Linux, it still differs for some instruction style on code.
Wiki says
The MASM32 EULA does not allow its usage in the development of open source software, and only allows it to be run in Windows operating systems.
so it is a no.
I use DosBox and it does work fine for me.
Details here
You should be able to run MASM under Wine.
MASM dont run with WINE, im running MASM under Virtual Box
Personally I prefer the NASM style, but you can probably run MASM under Wine (or failing that, in a VM). After all it shouldn't need any exotic API calls.
I've been able to run the Win32 NASM binary under Wine on Linux without any problems [long story, no net connection].
If you want to convert Microsoft's OMF binary format to ELF then you should be able to do so using objcopy, but you may need to compile in support for the right object formats.
Run MASM under Wine or see at the wiki that MASM can only run at Windows.
Regards.
An alternative to MASM is UASM.
UASM is a free MASM-compatible assembler based on JWasm.
It works for creating general Linux binaries.
However, shared objects requiring the -fPIC option is not possible with UASM.