Is there something similar to NanoBSD in Linux - linux

NanoBSD is a script that makes light, small and in-memory FreeBSD copy. It is useful in embedded systems. Is there something similar to NanoBSD in Linux? Specially a feature like Everything is read-only at run-time as it mentioned here .

A lot of toolchain / system build systems build Linux root filesystems which are designed to run completely out of a ramdisc (rootfs / tmpfs). This means that everything is read/write at runtime, but it does not persist across reboots (a persistent FS can of course, be mounted as a non-root FS).
The most well known of these is Busybox (with or without uclibc), which ships with various scripts to build very small-footprint Linux-based embedded systems (root FS is typically a few Mb only; just add a kernel). Busybox/Linux is not the same as GNU/Linux, but it is fairly similar - most things are simpler or have fewer options; some features are entirely absent or can be disabled at compile-time.
Linux is NOT an Operating system like FreeBSD, rather it is a kernel. You can choose to layer either GNU C library and tools (which I think all major general-purpose distributions do) or something else - which is mostly used for smaller systems, including uclibc, Android etc.

There are literally hundreds of toolchains, build environments and embedded distros of Linux, some only a couple of megabytes in size. Many also support some or many of the different processors Linux runs on (i386 and friends, ARM, Power, ...).
To get you started a couple of projects I find interesting: OpenWrt and OpenEmbedded, and lpclinux, Linux for NXP LPC3xxx ARM processors but there are really hundreds of them.
Some other resources
A very good source that (also) touches a number of issues specific to embedded systems is Linux from scratch. And this pdf gives some insight in the different available filesystems for an embedded Linux system.

i would take a look at TinyCore-Linux.
which isn't really ro but nearly the same Concept and i think there is also a was to get the OS/Binary Part ro were the config part is writeable.

Related

Program that runs on windows and linux

Is it possible to write a program (make executable) that runs on windows and linux without any interpreters?
Will it be able to take input and print output to console?
A program that runs directly on hardware, pure machine code as this should be possible in theory
edit:
Ok, file formats are different, system calls are different
But how hard or is it possible for kernel developers to introduce another executable format called raw for fun and science? Maybe raw program wont be able to report back but it should be able to inflict heavy load on cpu and raise its temperature as evidence of running for example
Is it possible to write a program (make executable) that runs on windows and linux without any interpreters?
in practice, no !
Levine's book Linkers and loaders explain why it is not possible in practice.
On recent Linux, an executable has the elf(5) format.
On Windows, it has some PE format.
The very first bytes of executables are different. And these two OSes have different system calls. The Linux ones are listed in syscalls(2).
And even on Linux, in practice, an executable is usually dynamically linked and depends on shared objects (and they are different from one distribution to the next one, so it is likely that an executable built for Debian/Testing won't run on Redhat). You could use the objdump(1), readelf(1), ldd(1) commands to inspect it, and strace(1) with gdb(1) to observe its runtime behavior.
Portability of software is often achieved by publishing it (in source form) with some open source license. The burden of recompilation is then on the shoulders of users.
In practice, real software (in particular those with a graphical user interface) depends on lots of OS specific and computer specific resources (e.g. fonts, screen size, colors) and user preferences.
A possible approach could be to have a small OS specific software base which generate machine code at runtime, like e.g. SBCL or LuaJit does. You could also consider using asmjit. Another approach is to generate opaque or obfuscated C or C++ code at runtime, compile it (with the system compiler), and load it -at runtime- as a plugin. On Linux, use dlopen(3) with dlsym(3).
Pitrat's book: Artificial Beings, the conscience of a conscious machine describes a software system (some artificial mathematician) which generates all of its C source code (half a million lines). Contact me by email to basile#starynkevitch.net for more.
The Wine emulator allows you to run some (but not all) simple Windows executables on Linux. The WSL layer is rumored to enable you to run some Linux executable on Windows.
PS. Even open source projects like RefPerSys or GCC or Qt may be (and often are) difficult to build.
No, mainly because executable formats are different, but...
With some care, you can use mostly the same code to create different executables, one for Linux and another one for windows. Depending on what you consider an interpreter Java also runs on both Windows and Linux (in a Java Virtual Machine though).
Also, it is possible to create scripts that can be interpreted both by PowerShell and by the Bash shell, such that running one of these scripts could launch a proper application compiled for the OS of the user.
You might require the windows user to run on WSL, which is maybe an ugly workaround but allows you to have the same executable for both Windows and Linux users.

How is programming in rtems different than Linux?

I am new to programmming in rtem and was wondering how are the two, rtems and linux, are different in terms of programming. I understand rtems is an real time operating system but if you were to make a hello world app, wouldn’t the program be the same?
Note that your question is quite generic. There are a lot of detail differences.
One of the biggest is the format of your binary: Most RTEMS binaries are statically linked together. You only have one big binary containing your system and application. There is some dynamic loading supported but it's not the case used by most users.
As already mentioned my n.m. in the comments RTEMS has a lot of the POSIX API (at least the embedded sub set). So you can use a lot of the same API like you do on Linux.
A big differences is that RTEMS has a global address space (on most targets). So you don't have a separation between tasks. That makes pointer errors a bit harder to debug.
Also a difference: Most embedded systems are targeted for long running applications. In such applications (regardless whether you are on Linux or on RTEMS or on any other system) you should be careful to clean up your stuff (close files, free memory, ...). In Linux (or other desktop class systems) you have processes and the kernel cleans up all resources after your process exits. Although you can create threads in RTEMS no one cleans up after a thread exits.
The POSIX attribute defaults for threads are not specified in the standard and may vary between RTEMS and Linux.

linux 0.01 kernel cross reference

i am searching for a linux cross reference for the first linux kernel 0.01,
many websites provide a LXR (Linux Cross Reference) for existing kernels starting from 2.x but not including old ones.
There is no cross-reference readily available for this version, because it is too old. If you want one, you will have to create it yourself. (Which should not be difficult; this version of the kernel is barely 10k lines of code. This is small enough that a cross-reference is hardly even necessary.)
Keep in mind that Linux 0.01 was a very early release. It represents the original "pre-alpha" version of the kernel that Linus Torvalds made available on his university's FTP server in 1991. At that point in time, the kernel had one developer (Linus himself) and no users.
Moreover, Linux 0.01 isn't even a very good resource for learning about the Linux kernel. It predates much of the modern organization of the kernel, and as such is significantly different from modern kernels. In particular:
Kconfig is not present. Linux 0.01 had no configuration options at all, and was built using hand-written Makefiles.
There is no arch directory yet. Linux 0.01 would only build and run on x86 systems.
There is no drivers directory either. The system only supported a few built-in system devices, such as the hard disk and keyboard, and those were essentially hard-coded into the kernel directory.
There is no support for SMP systems, nor any form of locking or kernel preemption. Multiprocessor x86 systems were extremely rare when Linux 0.01 was released, so Linus didn't have one to test on.
Many commonly used macros and structures in the modern Linux kernel, such as struct list, are not yet present. There wasn't a need for them yet.
Trying to use this extremely early version of Linux for learning purposes is not a good introduction to Linux kernel programming. If you want to learn, you should really work with a current version.
You don't need a cross-reference site. If you have a copy of the source code, download and use cscope. It's a great tool for searching C programs; I'm sure you'll find it useful.

Is there any difference between executable binary files between distributions?

As all Linux distributions use the same kernel, is there any difference between their executable binary files?
If yes, what are the main differences? Or does that mean we can build a universal linux executable file?
All Linux distributions use the same binary format ELF, but there is still some differences:
different cpu arch use different instruction set.
the same cpu arch may use different ABI, ABI defines how to use the register file, how to call/return a routine. Different ABI can not work together.
Even on same arch, same ABI, this still does not mean we can copy one binary file in a distribution to another. Since most binary files are not statically linked, so they depends on the libraries under the distribution, which means different distribution may use different versions or different compilation configuration of libraries.
So if you want your program to run on all distribution, you may have to statically link a version that depends on the kernel's syscall only, even this you can only run a specified arch.
If you really want to run a program on any arch, then you have to compile binaries for all arches, and use a shell script to start up the right one.
All Linux ports (that is, the Linux kernel on different processors) use ELF as the file format for executables and libraries. A specific ELF binary is labeled with a single architecture/OS on which it can run (although some OSes have compatibility to run ELF binaries from other OSes).
Most ports have support for the older a.out format. (Some processors are new enough that there have never existed any a.out executables for them.)
Some ports support other executable file formats as well; for example, the PA-RISC port has support for HP-UX's old SOM executables, and the μcLinux (nonmmu) ports support their own FLAT format.
Linux also has binfmt_misc, which allows userspace to register handlers for arbitrary binary formats. Some distributions take advantage of this to be able to execute Windows, .NET, or Java applications -- it's really still launching an interpreter, but it's completely transparent to the user.
Linux on Alpha has support for loading Intel binaries, which are run via the em86 emulator.
It's possible to register binfmt_misc for executables of other architectures, to be run with qemu-user.
In theory, one could create a new format -- perhaps register a new "architecture" in ELF -- for fat binaries. Then the kernel binfmt loader would have to be taught about this new format, and you wouldn't want to miss the ld-linux.so dynamic linker and the whole build toolchain. There's been little interest in such a feature, and as far as I know, nobody is working on anything like it.
Almost all linux program files use the ELF standard.
Old Unixes also used COFF format. You may still find executables from times of yore in this format. Linux still has support for it (I don't know if it's compiled in current distros, though).
If you want to create a program that runs an all Linux distributions, you can consider using scripting languages (like Python and Perl) or a platform independent programming language like Java.
Programs written in scripting languages are complied at execution time, which means they are always compiled to match the platform they are executed on, and, hence, should always work (given that the libraries are set up properly).
Programs written in Java, on the other hand, are compiled before distributing them, but can be executed on any Linux distribution as long as it has a Java VM installed.
Furthermore, programs written in Java can be run on other operating systems like MS Windows and Mac OS.
The same is true for many programs written in Python and Perl; however, whether a Python or Perl program will work on another operating system depends on what libraries are used by that program and whether these libraries are available on the other operating systems.

Building a custom Linux Live CD

Can anyone point me to a good tutorial on creating a bootable Linux CD from scratch?
I need help with a fairly specialized problem: my firm sells an expansion card that requires custom firmware. Currently we use an extremely old live CD image of RH7.2 that we update with current firmware. Manufacturing puts the cards in a machine, boots off the CD, the CD writes the firmware, they power off and pull the cards. Because of this cycle, it's essential that the CD boot and shut down as quickly as possible.
The problem is that with the next generation of cards, I have to update the CD to a 2.6 kernel. It's easy enough to acquire a pre-existing live CD - but those all are designed for showing off Linux on the desktop - which means they take forever to boot.
Can anyone fix me up with a current How-To?
Update:
So, just as a final update for anyone reading this later - the tool I ended up using was "livecd-creator".
My reason for choosing this tool was that it is available for RedHat-based distributions like CentOs, Fedora and RHEL - which are all distributions that my company supports already. In addition, while the project is very poorly documented it is extremely customizable. I was able to create a minimal LiveCD and edit the boot sequence so that it booted directly into the firmware updater instead of a bash shell.
The whole job would have only taken an hour or two if there had been a README explaining the configuration file!
There are a couple of interesting projects you could look into.
But first: does it have to be a CD-ROM? That's probably the slowest possible storage (well, apart from tape, maybe) you could use. What about a fast USB stick or a an IEE1394 hard-disk or maybe even an eSATA hard-disk?
Okay, there are several Live-CDs that are designed to be very small, in order to e.g. fit on a business card sized CD. Some were also designed to be booted from a USB stick, back when that meant 64-128 MiByte: Damn Small Linux is one of the best known ones, however it uses a 2.4 kernel. There is a sister project called Damn Small Linux - Not, which has a 2.6 kernel (although it seems it hasn't been updated in years).
Another project worth noting is grml, a Live-CD for system administration tasks. It does not boot into a graphic environment, and is therefore quite fast; however, it still contains about 2 GiByte of software compressed onto a CD-ROM. But it also has a smaller flavor, aptly named grml-small, which only contains about 200 MiByte of software compressed into 60 MiByte.
Then there is Morphix, which is a Live-CD builder toolkit based on Knoppix. ("Morphable Knoppix"!) Morphix is basically a tool to build your own special purpose Live-CD.
The last thing I want to mention is MachBoot. MachBoot is a super-fast Live-CD. It uses various techniques to massively speed up the boot process. I believe they even trace the order in which blocks are accessed during booting and then remaster the ISO so that those blocks are laid out contiguously on the medium. Their current record is less than 6 seconds to boot into a full graphical desktop environment. However, this also seems to be stale.
One key piece of advice I can give is that most LiveCDs use a compressed filesystem called squashfs to cram as much data on the CD as possible. Since you don't need compression, you could run the mksquashfs step (present in most tutorials) with -noDataCompression and -noFragmentCompression to save on decompression time. You may even be able to drop the squashfs approach entirely, but this would require some restructuring. This may actually be slower depending on your CD-ROM read speed vs. CPU speed, but it's worth looking into.
This Ubuntu tutorial was effective enough for me to build a LiveCD based on 8.04. It may be useful for getting the feel of how a LiveCD is composed, but I would probably not recommend using an Ubuntu LiveCD.
If at all possible, find a minimal LiveCD and build up with only minimal stripping out, rather than stripping down a huge LiveCD like Ubuntu. There are some situations in which the smaller distros are using smaller/faster alternatives rather than just leaving something out. If you want to get seriously hardcore, you could look at Linux From Scratch, and include only what you want, but that's probably more time than you want to spend.
Creating Your Own Custom Ubuntu 7.10 Or Linux Mint 4.0 Live-CD With Remastersys
Depends on your distro. Here's a good article you can check out from LWN.net
There is a book I used which covers a lot of distros, though it does not cover creating a flash-bootable image. The book is Live Linux(R) CDs: Building and Customizing Bootables. You can use it with supplemental information from your distro of choice.
So, just as a final update for anyone reading this later - the tool I ended up using was "livecd-creator".
My reason for choosing this tool was that it is available for RedHat-based distributions like CentOs, Fedora and RHEL - which are all distributions that my company supports already. In addition, while the project is very poorly documented it is extremely customizable. I was able to create a minimal LiveCD and edit the boot sequence so that it booted directly into the firmware updater instead of a bash shell.
The whole job would have only taken an hour or two if there had been a README explaining the configuration file!
Debian Live provides the best tools for building a Linux Live CD. Webconverger uses Debian Live for example.
It's very easy to use.
sudo apt-get install live-helper # from Debian unstable, which should work fine from Ubuntu
lh_config # edit config/* to your liking
sudo lh_build

Resources