Loading a Value object in List or DropdownList, DDD - domain-driven-design

I need to clarify something.
Have Person Aggreagate , 2 VOs (Country, StateProvince).
I want to load all country in my presentation layer (i am using mvc)
Evan says you only use repository (IPersonRepository) to work with root entity (it should always return just a reference to the Aggregate Root)
public interface IPersonRepository()
{
void savePerson(Person p);
void removePerson(Person p);
Ilist<Person> getPerson();
}
what i usually do to solve this :
Add in IPersonRepository this method
IList<Country> LookupCountrysOfPerson();
In Infra layer implement the Domain interfaces like this:
public IList<Person> LookupCountrysOfPerson()
{
return Session.CreateQuery("from Countrys").List<Person>());
}
My partner says im wrong.
Sometimes you have to sacrifice your domain model in order to accomplish some task
What is the best way to do this?
with code please! :)

I would say it's unlikely that you need country to be an entity. I suspect that country is nothing more than reference data, much like a person's title would be. Is there any behavior associated to country in your domain? I suspect it's just what's printed onto letters/envelops.
This question is somewhat similar to this one which I answered a while back:
Simple aggregate root and repository question
My suggestion is that you implement a Lookup service that your client can make use of and which is cached. Ignore the rules of DDD and anything to do with aggregates or repositories for this. As someone else has mentioned, this is where CQRS's ideology comes into play; the client shouldn't have to go through the domain in order to get data. The domain is purely transactional, not designed for queries.
This article explains how to build a generic lookup service for reference data for things that typically fill dropdowns in the UI (i.e. Title, Country etc)
http://wtfperminute.blogspot.com/2011/02/working-with-reference-data-lookups.html

Evans also says (pg 170) "An entity as basic as Location may be used by many objects for many reasons..."
I would also consider making Country an entity for the reasons given above. Perhaps more importantly, it is a low level object. You probably are also even supplying Country by configuration rather than through any actual domain activities. Therefore I would remove it from the Person and make it a standalone entity.
Also for this type of object you may not really need a dedicated repository, consider creating a single lookup service that provides query access for a group of similar objects of this nature.

If in your domain country is actually a VO (you don't want to maintain a thread of identity in the country name was changed etc.) which is the most common scenario, I would add a specialized class in the data access layer to return a list of all countries as VOs. I would also add caching (2nd level cache in NHibernate) to the country entity and list all countries query so that I don't have to hit the DB each time.
Actually, this is where CQRS really shines. CQRS acknowledges that you don't have to go through the domain layer in order to get some data for presentation purposes. In CQRS you just grab some data.

It sounds like countries are not in fact value objects here; they have distinct identities and are important for business purposes outside of your Person objects. They should become entities, and be treated in the fashion appropriate to them.
Think of it this way: let's say some volatile country had their current dictator overthrown and got a name change. The Person object's reference to a Country should still be valid, because the Country is not defined by its attributes (i.e. the string denoting its name), but by its identity.

Related

What is an Aggregate Root?

No, it is not a duplication question.
I have red many sources on the subject, but still I feel like I don't fully understand it.
This is the information I have so far (from multiple sources, be it articles, videos, etc...) about what is an Aggregate and Aggregate Root:
Aggregate is a collection of multiple Value Objects\Entity references and rules.
An Aggregate is always a command model (meant to change business state).
An Aggregate represents a single unit of (database - because essentialy the changes will be persisted) work, meaning it has to be consistent.
The Aggregate Root is the interface to the external world.
An Aggregate Root must have a globally unique identifier within the system
DDD suggests to have a Repository per Aggregate Root
A simple object from an aggregate can't be changed without its AR(Aggregate Root) knowing it
So with all that in mind, lets get to the part where I get confused:
in this site it says
The Aggregate Root is the interface to the external world. All interaction with an Aggregate is via the Aggregate Root. As such, an Aggregate Root MUST have a globally unique identifier within the system. Other Entites that are present in the Aggregate but are not Aggregate Roots require only a locally unique identifier, that is, an Id that is unique within the Aggregate.
But then, in this example I can see that an Aggregate Root is implemented by a static class called Transfer that acts as an Aggregate and a static function inside called TransferedRegistered that acts as an AR.
So the questions are:
How can it be that the function is an AR, if there must be a globaly unique identifier to it, and there isn't, reason being that its a function. what does have a globaly unique identifier is the Domain Event that this function produces.
Following question - How does an Aggregate Root looks like in code? is it the event? is it the entity that is returned? is it the function of the Aggregate class itself?
In the case that the Domain Event that the function returns is the AR (As stated that it has to have that globaly unique identifier), then how can we interact with this Aggregate? the first article clearly stated that all interaction with an Aggregate is by the AR, if the AR is an event, then we can do nothing but react on it.
Is it right to say that the aggregate has two main jobs:
Apply the needed changes based on the input it received and rules it knows
Return the needed data to be persisted from AR and/or need to be raised in a Domain Event from the AR
Please correct me on any of the bullet points in the beginning if some/all of them are wrong is some way or another and feel free to add more of them if I have missed any!
Thanks for clarifying things out!
I feel like I don't fully understand it.
That's not your fault. The literature sucks.
As best I can tell, the core ideas of implementing solutions using domain driven design came out of the world of Java circa 2003. So the patterns described by Evans in chapters 5 and six of the blue book were understood to be object oriented (in the Java sense) domain modeling done right.
Chapter 6, which discusses the aggregate pattern, is specifically about life cycle management; how do you create new entities in the domain model, how does the application find the right entity to interact with, and so on.
And so we have Factories, that allow you to create instances of domain entities, and Repositories, that provide an abstraction for retrieving a reference to a domain entity.
But there's a third riddle, which is this: what happens when you have some rule in your domain that requires synchronization between two entities in the domain? If you allow applications to talk to the entities in an uncoordinated fashion, then you may end up with inconsistencies in the data.
So the aggregate pattern is an answer to that; we organize the coordinated entities into graphs. With respect to change (and storage), the graph of entities becomes a single unit that the application is allowed to interact with.
The notion of the aggregate root is that the interface between the application and the graph should be one of the members of the graph. So the application shares information with the root entity, and then the root entity shares that information with the other members of the aggregate.
The aggregate root, being the entry point into the aggregate, plays the role of a coarse grained lock, ensuring that all of the changes to the aggregate members happen together.
It's not entirely wrong to think of this as a form of encapsulation -- to the application, the aggregate looks like a single entity (the root), with the rest of the complexity of the aggregate being hidden from view.
Now, over the past 15 years, there's been some semantic drift; people trying to adapt the pattern in ways that it better fits their problems, or better fits their preferred designs. So you have to exercise some care in designing how to translate the labels that they are using.
In simple terms an aggregate root (AR) is an entity that has a life-cycle of its own. To me this is the most important point. One AR cannot contain another AR but can reference it by Id or some value object (VO) containing at least the Id of the referenced AR. I tend to prefer to have an AR contain only other VOs instead of entities (YMMV). To this end the AR is responsible for consistency and variants w.r.t. the AR. Each VO can have its own invariants such as an EMailAddress requiring a valid e-mail format. Even if one were to call contained classes entities I will call that semantics since one could get the same thing done with a VO. A repository is responsible for AR persistence.
The example implementation you linked to is not something I would do or recommend. I followed some of the comments and I too, as one commenter alluded to, would rather use a domain service to perform something like a Transfer between two accounts. The registration of the transfer is not something that may necessarily be permitted and, as such, the domain service would be required to ensure the validity of the transfer. In fact, the registration of a transfer request would probably be a Journal in an accounting sense as that is my experience. Once the journal is approved it may attempt the actual transfer.
At some point in my DDD journey I thought that there has to be something wrong since it shouldn't be so difficult to understand aggregates. There are many opinions and interpretations w.r.t. to DDD and aggregates which is why it can get confusing. The other aspect is, in IMHO, that there is a fair amount of design involved that requires some creativity and which is based on an understanding of the domain itself. Creativity cannot be taught and design falls into the realm of tacit knowledge. The popular example of tacit knowledge is learning to ride a bike. Now, we can read all we want about how to ride a bike and it may or may not help much. Once we are on the bike and we teach ourselves to balance then we can make progress. Then there are people who end up doing absolutely crazy things on a bike and even if I read how to I don't think that I'll try :)
Keep practicing and modelling until it starts to make sense or until you feel comfortable with the model. If I recall correctly Eric Evans mentions in the Blue Book that it may take a couple of designs to get the model closer to what we need.
Keep in mind that Mike Mogosanu is using a event sourcing approach but in any case (without ES) his approach is very good to avoid unwanted artifacts in mainstream OOP languages.
How can it be that the function is an AR, if there must be a globaly unique identifier to it, and there isn't, reason being that
its a function. what does have a globaly unique identifier is the
Domain Event that this function produces.
TransferNumber acts as natural unique ID; there is also a GUID to avoid the need a full Value Object in some cases.
There is no unique ID state in the computer memory because it is an argument but think about it; why you want a globaly unique ID? It is just to locate the root element and its (non unique ID) childrens for persistence purposes (find, modify or delete it).
Order A has 2 order lines (1 and 2) while Order B has 4 order lines (1,2,3,4); the unique identifier of order lines is a composition of its ID and the Order ID: A1, B3, etc. It is just like relational schemas in relational databases.
So you need that ID just for persistence and the element that goes to persistence is a domain event expressing the changes; all the changes needed to keep consistency, so if you persist the domain event using the global unique ID to find in persistence what you have to modify the system will be in a consistent state.
You could do
var newTransfer = New Transfer(TransferNumber); //newTransfer is now an AG with a global unique ID
var changes = t.RegisterTransfer(Debit debit, Credit credit)
persistence.applyChanges(changes);
but what is the point of instantiate a object to create state in the computer memory if you are not going to do more than one thing with this object? It is pointless and most of OOP detractors use this kind of bad OOP design to criticize OOP and lean to functional programming.
Following question - How does an Aggregate Root looks like in code? is it the event? is it the entity that is returned? is it the function
of the Aggregate class itself?
It is the function itself. You can read in the post:
AR is a role , and the function is the implementation.
An Aggregate represents a single unit of work, meaning it has to be consistent. You can see how the function honors this. It is a single unit of work that keeps the system in a consistent state.
In the case that the Domain Event that the function returns is the AR (As stated that it has to have that globaly unique identifier),
then how can we interact with this Aggregate? the first article
clearly stated that all interaction with an Aggregate is by the AR, if
the AR is an event, then we can do nothing but react on it.
Answered above because the domain event is not the AR.
4 Is it right to say that the aggregate has two main jobs: Apply the
needed changes based on the input it received and rules it knows
Return the needed data to be persisted from AR and/or need to be
raised in a Domain Event from the AR
Yes; again, you can see how the static function honors this.
You could try to contat Mike Mogosanu. I am sure he could explain his approach better than me.

DDD Factory Responsibility

If have the following Code.
public class CountryFactory : IEntityFactory
{
private readonly IRepository<Country> countryRepository;
public CountryFactory(IRepository<Country> countryRepository)
{
this.countryRepository = countryRepository;
}
public Country CreateCountry(string name)
{
if (countryRepository.FindAll().Any(c => c.Name == name))
{
throw new ArgumentException("There is already a country with that name!");
}
return new Country(name);
}
}
From a DDD approach, is the the correct way to create a Country. Or is it better to have a CountryService which checks whether or not a country exists, then if it does not, just call the factory to return a new entity. This will then mean that the service will be responsible of persisting the Entity rather than the Factory.
I'm a bit confused as to where the responsibility should lay. Especially if more complex entities needs to be created which is not as simple as creating a country.
In DDD factories are used to encapsulate complex objects and aggregates creation. Usually, factories are not implemented as separate classes but rather static methods on the aggregate root class that returns the new aggregate.
Factory methods are better suited than constructors since you might need to have technical constructors for serialization purposes and var x = new Country(name) has very little meaning inside your Ubiquitous Language. What does it mean? Why do you need a name when you create a country? Do you really create countries, how often new countries appear, do you even need to model this process? All these questions arise if you start thinking about your model and ubiquitous language besides tactical pattern.
Factories must return valid objects (i.e. aggregates), checking all invariants inside it, but not outside. Factory might receive services and repositories as parameters but this is also not very common. Normally, you have an application service or command handler that does some validations and then creates a new aggregate using the factory method and adds it to the repository.
There is also a good answer by Lev Gorodinski here Factory Pattern where should this live in DDD?
Besides, implementation of Factories is extensively described in Chapter 11 of the Red Book.
Injecting a Repository into a Factory is OK, but it shouldn't be your first concern. The starting point should be : what kind of consistency does your business domain require ?
By checking Country name uniqueness in CountryFactory which is part of your Domain layer, you give yourself the impression that the countries will always be consistent. But the only aggregate is Country and since there is no AllCountries aggregate to act as a consistency boundary, respect of this invariant will not be guaranteed. Somebody could always sneak in a new Country that has exactly the same name as the one being added, just after you checked it. What you could do is wrap the CreateCountry operation into a transaction that would lock the entire set of Countries (and thus the entire table if you use an RDBMS) but this would hurt concurrency.
There are other options to consider.
Why not leverage a database unique constraint to enforce the Country name invariant ? As a complement, you could also have another checkpoint at the UI level to warn the user that the country name they typed in is already taken. This would necessitate another "query" service that just calls CountryRepository.GetByName() but where the returned Countries are not expected to be modified.
Soon you'll be realizing that there are really two kinds of models - ones that can give you some domain data at a given moment in time so that you can display it on a user interface, and ones that expose operations (AddCountry) and will guarantee that domain invariants always hold. This is a first step towards CQRS.
What is the frequency of Countries being added or modified ? If it is that high, do we really need a Country name to be unique at all times ? Wouldn't it solve a lot of problems if we loosened up the constraints and allowed a user to temporarily create a duplicate Country name ? A mechanism could detect the duplicates later on and take a compensating action, putting the newly added Country on hold and reaching out to the user to ask them to change the name. A.k.a eventual consistency instead of immediate consistency.
Does Country need to be an Aggregate ? What would be the cost if it was a Value Object and duplicated in each entity where it is used ?

DDD referencing large data sets / injecting repository?

I am struggling to find the best solution to the following. I need to determine whether a Country is "InUse", (e.g. currently referenced by an Address).
I have the following simplified model mapped in NHibernate:
class Address
{
public Country Country {get; set;}
}
class Country
{
public List<Address> Addresses {get; set;}
bool IsInUse()
{
return Addresses.Any();
}
}
Using the IsInUse method on Country is inefficient, as it would result in a load of all countries (the .Any() is executed in memory). In addition, Country doesn't really need to know about Addresses, it's purely there for the IsInUse method. So, I like the above example from a consumer point of view, it feels like the domain object should expose an IsInUse method, but it will not perform and contains unnecessary relationships.
Other options I can think of are;
Just use a repository and call that directly from service layer. The repository could encapsulate a call that simply issued a SELECT COUNT(*), rather than SELECT *, as would be the case with the lazy load option above. This options leave the IsInUse logic entirely outside of the domain layer.
Inject a repository into IsInUse(), which calls out to the same as above. I have read that this is VERY bad DDD practise.
Does anyone have any advice or better solutions to this problem.
Hope the above makes sense... Thanks.
I would suggest that you not calculate it each time you perform the query. Denormalize the IsInUse. Each time an address is added or removed from a country you can determine whether the country is in use and save that value.
How you go about determining that value is another story and there are various techniques ranging from immediately determining it when you save the address and updating the country's IsInUse value or even using messaging if these happen to be entities in different BCs.
It feels like you're making up domain concepts to solve your issue. Could you tell us why you need to know if a country is in use?
Repositories are great for capturing the language and aggregate persistence, not so much for querying. You're basically asking your data a question. Maybe move this logic altogether to the query side? Also see http://www.jefclaes.be/2014/01/repositories-where-did-we-go-wrong_26.html.
Maybe there is another way to keep track of all the countries in use. Where are those addresses coming from? Maybe you can introduce domain events - when an address is registered, add the country to the list of countries in use, so you can query a smaller list.
I'd design your domain entities without concepts from NHibernate or any other persistence mechanism. If this means that by using NHibernate you need to introduce 2-way mapping properties as standard, then I would only use your NHibernate entities within your repositories and design a separate set of entities for your domain model and map between the two. It's seems plausible to me, from your business's point of view, that a Country shouldn't know anything about Address.
Injecting the repository into your domain entity or using lazy loading typically go against DDD and cause issues when you serialize your entities or they lose database context.
Your IsInUse problem can be solved by either caching a query (not everything religiously has to be in a repository), maybe you could create a CountryStatistics class that handles this? Or you could keep a separate persisted country list, which gets updated every time a new address is created with a never-used-before country.

DDD: Large Aggregate Root - Person

I am building a system to manage person information. I have an ever growing aggregate root called Person. It now has hundreds of related objects, name, addresses, skills, absences, etc. My concern is that the Person AR is both breaking SRP and will create performance problems as more and more things (esp collections) get added to it.
I cannot see how with DDD to break this down into smaller objects. Taking the example of Absences. The Person has a collection of absence records (startdate, enddate, reason). These are currently managed through the Person (BookAbsence, ChangeAbsence, CancelAbsence). When adding absences I need to validate against all other absences, so I need an object which has access to the other absences in order to do this validation.
Am I missing something here? Is there another AR I have not identified? In the past I would have done this via an "AbsenceManager" service, but would like to do it using DDD.
I am fairly new to DDD, so maybe I am missing something.
Many Thanks....
The Absence chould be modeled as an aggregate. An AbsenceFactory is reposible for validating against other Absence s when you want to add a new Absence.
Code example:
public class AbsenceFactory {
private AbsenceRepository absenceRepository;
public Absence newAbsenceOf(Person person) {
List<Absence> current =
absenceRepository.findAll(person.getIdentifier());
//validate and return
}
}
You can find this pattern in the blue book (section 6.2 Factory if I'm not mistaken)
In other "modify" cases, you could introduce a Specification
public class SomeAbsenceSpecification {
private AbsenceRepository absenceRepository;
public SomeAbsenceSpecification(AbsenceRepository absenceRepository) {
this.absenceRepository=absenceRepository;
}
public boolean isSatisfiedBy(Absence absence) {
List<Absence> current =
absenceRepository.findAll(absence.getPersonIdentifier());
//validate and return
}
}
You can find this pattern in the blue book(section 9.2.3 Specification)
This is indeed what makes aggregate design so tricky. Ownership does not necessarily mean aggregation. One needs to understand the domain to be able to give a proper answer so we'll go with the good ol' Order example. A Customer would not have a collection of Order objects. The simplest rule is to think about deleting an AR. Those objects that could make sense in the absence of the AR probably do not belong on the AR. A Customer may very well have a collection of ActiveOrder objects, though. Of course there would be an invariant stating that a customer cannot be deleted if it has active orders.
Another thing to look out for is a bloated bounded context. It is conceivable that you could have one or more bounded contexts that have not been identified leading to a situation where you have an AR doing too much.
So in your case you may very well still be interested in the Absence should the Customer be deleted. In the case of an OrderLine it has no meaning without its Order. So no lifecycle of its own.
Hope that helps ever so slightly.
I am building a system to manage person information.
Are you sure that a simple CRUD application that edit/query RDBMS's tables via SQL, wouldn't be a cheaper approach?
If you can express the most of the business rules in term of data relations and table operations, you shouln't use DDD at all.
I have an ever growing aggregate root called Person.
If you actually have complex business rules, an ever growing aggregate is often a syntom of undefined (or wrongly defined) context boundaries.

In domain driven design, can entities have their own repositories?

I'm working a pretty standard e-commerce web site where there are Products and Categories. Each product has an associated category, which is a simple name-value pair object used to categorise a product (e.g. item 1234 may have a category "ballon").
I modelled the product as a root aggregate, which owns and knows how to modify it's category, which is an entity.
However, I ran into a problem where a user needs to be able to search a category. How am I supposed to implement this in DDD? I'm new to DDD but I believe that only root aggregates should be given it's own repository. So that leaves me with 2 options:
Add "SearchCategory" method to the ProductRepository
Implement the search logic as service (i.e. CategoryFinderService)
I personally think option 2 is more logical but it feels weird to have a service that touches database. Somehow I feel that only repository should be allowed to interact with database.
Can someone please tell me what's the best way to implement this?
IMHO, in your Domain Model, Category should not be child of the Product Aggregation. The Product has a Category, but it does not know how to create or edit a Category.
Take this another example. Imagine the ShoppingCart class, it's an aggregate root and contains a list of Items. The ShoppingCart is responsible for adding/editing/removing the Items, in this case you won't need a Repository for the Item class.
Not sure by the way, I'm new to this just like you.
Placing something You don't know where to put into artificial services usually leads to anemic domain model.
I would go with first option. But need for entities without context of root is a sign that You might lack another root.
Don't try to implement everything with your domain model. The domain model is powerful for changing the state of the system, but unnecessary complex for querying. So separate the two. It's called Command Query Responsibility Segregation, or CQRS. And no, it has nothing to do with Event Sourcing, even though they do work nicely together.
I implement scenarios such as this so that I have a domain logic side with the domain objects and repositories (if needed), which do the state changing when something happens, i.e. new order is placed or order is shipped. But when I just need to show something in the UI, for instance the list of the products filtered by the category, it is a simple query and does not involve the domain objects at all. It simply returns Data Transfer Objects (DTO) that do not contain any domain logic at all.

Resources