Commit protocol - protocols

I'm building a REST web service that receives a request and must return "Ok" if the operation was done correctly. How could I deal with the possibility of the loose of the connection while returning this "Ok" message?
For example, a system like Amazon SimpleDB.
1) It receives a request.
2) Process the request (store and replicates the content).
3) Return a confirmation message.
If the connection was lost between phases 2 and 3, the client thinks the operation was not successful then submits again.
Thanks!

A system I reviewed earlier this year had a process similar to this. The solution they implemented was to have the client reply to the commit message, and clear a flag on the record at that point. There was a periodic process that checked every N minutes, and if an entry existed that was completed, but that the client hadn't acknowledged, that transaction was rolled back. This allowed a client to repost the transaction, but not have 2 'real' records committed on the server side.

In the event of the timeout scenario, you could do the following:
Send a client generated unique id with the initial request in a header.
If the client doesn't get a response, then it can resend the request with the same id.
The server can keep a list of ids successfully processed and return an OK, rather than repeating the action.
The only issue with this is that the server will need to eventually remove the client ids. So there would need to be a time window for the server to keep the ids before purging them.

Depends on the type of web service. The whole nature of HTTP and REST is that it's basically stateless.
e.g. In the SimpleDB case, if you're simply requesting a value for a given key. If in the process of returning it the client connection is dropped then the client can simply re-request the data at a later time. That data is likely to have been cached by the db engine or the operating system disk cache anyway.
If you're storing or updating a value and the data is identical then quite often the database engines know the data hasn't changed and so the update won't take very long at all.
Even complex queries can run quicker the second time on some database engines.
In short, I wouldn't worry about it unless you can prove there is a performance problem. In which case, start caching the results of some recent queries yourself. Some REST based frameworks will do this for you. I suspect you won't even find it to be an issue in practice though.

Related

What can cause "idle in transaction" for "BEGIN" statements

We have a node.js application that connects via pg-promise to a Postgres 11 server - all processes are running on a single cloud server in docker containers.
Sometimes we hit a situation where the application does not react anymore.
The last time this happened, I had a little time to check the db via pgadmin and it showed that the connections were idle in transaction with statement BEGIN and an exclusive lock of virtualxid
I think the situation is like this:
the application has started a transaction by sending the BEGIN sql command to the db
the db got this command and started a new transaction and thus acquired an exclusive lock of mode virtualxid
now the db waits for the application to send the next statement/s (until it receives COMMIT or ROLLBACK) - and then it will release the exclusive lock of mode virtualxid
but for some reason it does not get anymore statements:
I think that the node.js event-loop is blocked - because at the time, when we see these locks, the node.js application does not log anymore statements. But the webserver still gets requests and reported some upstream timed out requests.
Does this make sense (I'm really not sure about 2. and 3.)?
Why would all transactions block at the beginning? Is this just coincidence or is the displayed SQL maybe wrong?
BTW: In this answer I found, that we can set idle_in_transaction_session_timeout so that these transactions will be released after a timeout - which is great, but I try to understand what's causing this issue.
The transactions are not blocking at all. The database is waiting for the application to send the next statement.
The lock on the transaction ID is just a technique for transactions to block each other, even if they are not contending for a table lock (for example, if they are waiting for a row lock): each transaction holds an exclusive lock on its own transaction ID, and if it has to wait for a concurrent transaction to complete, it can just request a lock on that transaction's ID (and be blocked).
If all transactions look like this, then the lock must be somewhere in your application; the database is not involved.
When looking for processes blocked in the database, look for rows in pg_locks where granted is false.
Your interpretation is correct. As for why it is happening, that is hard to say. It seems like there is some kind of bug (maybe an undetected deadlock) in your application, or maybe in nodes.js or pg-promise. You will have to debug at that level.
As expected the problems were caused by our application code. Transactions were used incorrectly:
One of the REST endpoints started a new transaction right away, using Database.tx().
This transaction was passed down multiple levels, but one function in the chain had an error and passed undefined instead of the transaction to the next level
the lowest repository level function started a new transaction (because the transaction parameter was undefined), by using Database.tx() a second time
This started to fail, under heavy load:
The connection pool size was set to 10
When there were many simultaneous requests for this endpoint, we had a situation where 10 of the requests started (opened the outer transaction) and had not yet reached the repository code that will request the 2nd transaction.
When these requests reached the repository code, they request a new (2nd) connection from the connection-pool. But this call will block because there are currently all connections in use.
So we have a nasty application level deadlock
So the solution was to fix the application code (the intermediate function must pass down the transaction correctly). Then everything works.
Moreover I strongly recommend to set a sensible idle_in_transaction_session_timeout and connection-timeout. Then, even if such an application-deadlock is introduced again in future versions, the application can recover automatically after this timeout.
Notes:
pg-postgres before v 10.3.4 contained a small bug #682 related to the connection-timeout
pg-promise before version 10.3.5 could not reocver from an idle-in-transaction-timeout and left the connection in a broken state: see pg-promise #680
Basically there was another issue: there was no need to use a transaction - because all functions were just reading data: so we can just use Database.task() instead of Database.tx()

Web Api - Mutex Per User

I have an asp.net core Web Api application.
In my application I have Web Api method which I want to prevent multi request from the same user to enter simultaneously. I don't mind request from different users to perform simultaneously.
I am not sure how to create the lock and where to put it. I thought about creating some kind of a dictionary which will contains the user id and perform the lock on the item but I don't think i'm getting it right. Also, what will happen if there is more than one server and there is a load balancer?
Example:
Let assume each registered user can do 10 long task each month. I need to check for each user if he exceeded his monthly limit. If the user will send many simultaneously requests to the server, he might be allowed to perform more than 10 operations. I understand that I need to put a lock on the method but I do want to allow other users to perform this action simultaneously.
What you're asking for is fundamentally not how the Internet works. The HTTP and underlying IP protocols are stateless, meaning each request is supposed to run independent of any knowledge of what has occurred previously (or concurrently, as the case may be). If you're worried about excessive load, your best bet is to implement rate limiting/throttling tied to authentication. That way, once a user burns through their allotted requests, they're cut off. This will then have a natural side-effect of making the developers programming against your API more cautious about sending excessive requests.
Just to be a bit more thorough, here, the chief problem with the approach you're suggesting is that I know of no way it can be practically implemented. You can use something like SemaphoreSlim to create a lock, but that needs to be static so that the same instance is used for each request. Being static is going to limit your ability to use a dictionary of them, which is what you'll need for this. It can technically be done, I suppose, but you'd have to use a ConcurrentDictionary and even then, there's no guarantee of single-thread additions. So, concurrent requests for the same user could load concurrent semphaphores into it, which defeats the entire point. I suppose you could front-load the dictionary with a semphaphore for each user from the start, but that could become a huge waste of resources, depending on your user-base. Long and short, it's one of those things where when you're finding a solution this darn difficult, it's a good sign you're likely trying to do something you shouldn't be doing.
EDIT
After reading your example, I think this really just boils down to an issue of trying to handle the work within the request pipeline. When there's some long-running task to be completed or just some heavy work to be done, the first step should always be to pass it off to a background service. This allows you to return a response quickly. Web servers have a limited amount of threads to handle requests with, and you want to service the request and return a response as quickly as possible to keep from exhausting your threadpool.
You can use a library like Hangfire to handle your background work or you can implement an IHostedService as described here to queue work on. Once you have your background service ready, you would then just immediately hand off to that any time your get a request to this endpoint, and return a 202 Accepted response with a URL the client can hit to check the status. That solves your immediate issue of not wanting to allow a ton of requests to this long-running job to bring your API down. It's now essentially doing nothing more that just telling something else to do it and then returning immediately.
For the actual background work you'd be queuing, there, you can check the user's allowance and if they have exceeded 10 requests (your rate limit), you fail the job immediately, without doing anything. If not, then you can actually start the work.
If you like, you can also enable webhook support to notify the client when the job completes. You simply allow the client to set a callback URL that you should notify on completion, and then when you've finish the work in the background task, you hit that callback. It's on the client to handle things on their end to decide what happens when the callback is it. They might for instance decide to use SignalR to send out a message to their own users/clients.
EDIT #2
I actually got a little intrigued by this. While I still think it's better for your to offload the work to a background process, I was able to create a solution using SemaphoreSlim. Essentially you just gate every request through the semaphore, where you'll check the current user's remaining requests. This does mean that other users must wait for this check to complete, but then your can release the semaphore and actually do the work. That way, at least, you're not blocking other users during the actual long-running job.
First, add a field to whatever class you're doing this in:
private static readonly SemaphoreSlim _semaphore = new SemaphoreSlim(1, 1);
Then, in the method that's actually being called:
await _semaphore.WaitAsync();
// get remaining requests for user
if (remaining > 0)
{
// decrement remaining requests for user (this must be done before this next line)
_semaphore.Release();
// now do the work
}
else
{
_semaphore.Release();
// handle user out of requests (return error, etc.)
}
This is essentially a bottle-neck. To do the appropriate check and decrementing, only one thread can go through the semaphore at a time. That means if your API gets slammed, requests will queue up and may take a while to complete. However, since this is probably just going to be something like a SELECT query followed by an UPDATE query, it shouldn't take that long for the semaphore to release. You should definitely do some load testing and watch it, though, if you're going to go this route.

Cancel a running query

I have an application where users are running a geospatial query against a mongo database. The query can return many thousands of results (~50k). These results are then streamed to the client over a websocket. However, users can abort a request mid result set and execute a new query. Users will frequently start, abort, and re-start requests on the order of several times per minute. Sometimes they even cancel/restart every couple of seconds.
The question is, when a user aborts a request, how do I cancel the query on the server so it doesn't continue to tie up resources streaming back thousands of unneeded results? I'm currently calling destroy() on the cursor, but it's not clear that this is actually stopping the query from executing on the server.
What's the best practice in this case?
Have you tried this?
db.currentOp()
db.killOp(IDRETURNEDHE)
This is a good example.
The answer is it depends upon a lot of your implementation details.
If your server is in the middle of streaming results (e.g. still hasn't sent or queued everything) when the server receives some sort of other message that the previous results should be cancelled, then it is possible for you to communicate with that other stream and tell it to stop sending. How exactly you would do that depends entirely upon your code and you would have to show us your code for us to know.
Chances are the db query is long since complete and what is going on is the server is in the process of streaming results to the client. So, if that's the case, then it isn't the db you're looking for, it's the code that streams the response to the client. Since node.js JS is single threaded, the only time another request would actually get run on the server would be while the streaming code was in some async write operation, waiting for that to finish. You would probably have to set some flag that was uniquely associated with a particular user and then your stream code would have to check for that flag before each chunk of data was sent. If it saw the cancel flag, it could abandon sending the rest of the results.
You could make things more cancellable by explicitly chunking your results (say 500 at a time) and checking for a cancel flag between the sending of each chunk.
If, on the other hand, all the data has already been buffered up by the TCP layer on the server, then the only way to stop that from being sent is to tear down the webSocket and force the client to reconnect.

Is this MEAN stack design-pattern suitable at the 1,000-10,000 user scale?

Let's say that when a user logs into a webapp, he sees a list of information.
Let's say that list of information is served by one of two dynos (via heroku), but that the list of information originates from a single mongo database (i.e., the nodejs dynos are just passing the mongo information to a user when he logs into the webapp).
Question: Suppose I want to make it possible for a user to both modify and add to that list of information.
At a scale of 1,000-10,000 users, is the following strategy suitable:
User modifies/adds to data; HTTP POST sent to one of the two nodejs dynos with the updated data.
Dyno (whichever one it may be) takes modification/addition of data and makes a direct query into the mongo database to update the data.
Dyno sends confirmation back to the client that the update was successful.
Is this OK? Would I have to likely add more dynos (heroku)? I'm basically worried that if a bunch of users are trying to access a single database at once, it will be slow, or I'm somehow risking corrupting the entire database at the 1,000-10,000 person scale. Is this fear reasonable?
Short answer: Yes, it's a reasonable fear. Longer answer, depends.
MongoDB will queue the responses, and handle them in the order it receives. Depending on how much of it is being served from memory, it may or maybe not be fast enough.
NodeJS has the same design pattern, where it will queue responses it doesn't process, and execute them when the resources become available.
The only way to tell if performance is being hindered is by monitoring it, and seeing if resources consistently hit a threshold you're uncomfortable with passing. On the upside, during your discovery phase your clients will probably only notice a few milliseconds of delay.
The proper way to implement that is to spin up a new instance as the resources get consumed to handle the traffic.
Your database likely won't corrupt, but if your data is important (and why would you collect it if it isn't?), you should be creating a replica set. I would probably go with a replica set of data before I go with a second instance of node.

How to handle requests that have heavy load?

This is a Brain-Question for advice on which scenario is a smarter approach to tackle situations of heavy lifting on the server end but with a responsive UI for the User.
The setup;
My System consists of two services (written in node); One Frontend Service that listens on Requests from the user and a Background Worker, that does heavy lifting and wont be finished within 1-2 seconds (eg. video conversion, image resizing, gzipping, spidering etc.). The User is connected to the Frontend Service via WebSockets (and normal POST Requests).
Scenario 1;
When a User eg. uploads a video, the Frontend Service only does some simple checks, creates a job in the name of the User for the Background Worker to process and directly responds with status 200. Later on the Worker see's its got work, does the work and finishes the job. It then finds the socket the user is connected to (if any) and sends a "hey, job finished" with the data related to the video conversion job (url, length, bitrate, etc.).
Pros I see: Quick User feedback of sucessfull upload (eg. ProgressBar can be hidden)
Cons I see: User will get a fake "success" respond with no data to handle/display and needs to wait till the job finishes anyway.
Scenario 2;
Like Scenario 1 but that the Frontend Service doesn't respond with a status 200 but rather subscribes to the created job "onComplete" event and lets the Request dangle till the callback is fired and the data can be sent down the pipe to the user.
Pros I see: "onSuccess", all data is at the User
Cons I see: Depending on the job's weight and active job count, the Users request could Timeout
While writing this question things are getting clearer to me by the minute (Scenario 1, but with smart success and update events sent). Regardless, I'd like to hear about other Scenarios you use or further Pros/Cons towards my Scenarios!?
Thanks for helping me out!
Some unnecessary info; For websockets I'm using socket.io, for job creating kue and for pub/sub redis
I just wrote something like this and I use both approaches for different things. Scenario 1 makes most sense IMO because it matches the reality best, which can then be conveyed most accurately to the user. By first responding with a 200 "Yes I got the request and created the 'job' like you requested" then you can accurately update the UI to reflect that the request is being dealt with. You can then use the push channel to notify the user of updates such as progress percentage, error, and success as needed but without the UI 'hanging' (obviously you wouldn't hang the UI in scenario 2 but its an awkward situation that things are happening and the UI just has to 'guess' that the job is being processed).
Scenario 1 -- but instead of responding with 200 OK, you should respond with 202 Accepted. From Wikipedia:
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
202 Accepted The request has been accepted for processing, but the
processing has not been completed. The request might or might not
eventually be acted upon, as it might be disallowed when processing
actually takes place.
This leaves the door open for the possibility of worker errors. You are just saying you accepted the request and is trying to do something with it.

Resources