Is it possible to upload data as a background process in j2me? - java-me

Even with a poor network connection?
Specifically, I've written code which launches a separate thread (from the UI) that attempts to upload a file via HTTP POST. I've found, however, that if the connection is bad, the processor gets stuck on outputstream.close() or httpconnection.getheaderfield() or any read/write which forces data over the network. This causes not only the thread to get stuck, but steals the entire processor, so even the user interface becomes unresponsive.
I've tried lowering the priority of the thread, to no avail.
My theory is that there is no easy way of avoiding this behavior, which is why all the j2me tutorial instruct developers to create a ‘sending data over the network…’ screen, instead of just sending everything in a background thread. If someone can prove me wrong, that would be fantastic.
Thanks!

One important aspect is you need to have a generic UI or screen that can be displayed when the network call in background fails. It is pretty much a must on any mobile app, J2ME or otherwise.
As Honza said, it depends on the design, there are so many things that can be done, like pre-fetching data on app startup, or pre-fetching data based on the screen that is loaded (i.e navigation path), or having a default data set built in into the app etc.
Another thing that you can try is a built-in timer mechanism that retries data download after certain amount of time, and aborting after say 5 tries or 1-2 minutes and displaying generic screen or error message.
Certain handsets in J2ME allow detection of airplane mode, if possible you can detect that and promptly display an appropriate screen.
Also one design that has worked for me is synchronizing UI and networking threads, so that they dont lock up each other (take this bit of advice with heavy dose of salt as I have had quite a few interesting bugs on some samsung and sanyo handsets because of this)
All in all no good answer for you, but different strategies.

It pretty much depends on how you write the code and where you run it. On CLDC the concept of threading is pretty limited and if any thread is doing some long lasting operation other threads might be (and usualy are) blocked by it as well. You should take that into account when designing your application.

You can divide your file data into chunks and then upload with multiple retries on failure. This depends on your application strategy . If your priority is to upload a bulk data with out failure. You need to have assemble the chunks on server to build back your data . This may have the overhead for making connections but the chance is high for your data will get uploaded . If you are not uploading files concurrently this will work with ease .

Related

Nodejs scaling and prioritising functions

We have a node application running on the server that gets hit a lot and has to compile a zip file for download. That works well so far but I am nervous we will hit a point where performance becomes an issue.
(The application is currently running with forever on a ubuntu 14.04 machine.)
I am now asked to add all kinds of new features to the app which are more secondary and should not decrease the performance of the main function (the zip download). It would be OK to have those additional features fail in case the app is hit too many times in favour of the main zipping process.
What is the best practise here. Creating a REST API for the secondary features and put everything into a waiting list? It surely isn't enough to just create a second app and spawn a new process each time the main zip process finishes? How Can I ensure the most redundancy? I'm not talking about a multi-core cluster setup or load-balancing on NGINX, but a smart way of prioritising application functions on application level.
I hope this is not too broad. Cheers
First off, everything should be using async I/O, no synchronous I/O anywhere in your server. That's the #1 rule for building a scalable node.js server.
Second off, the highest priority tasks that have any significant CPU usage should be allowed to use multiple cores. If, as you say, the highest priority tasks is creating the zip download, then you should makes sure that that operation can take advantage of multiple cores.
You can accomplish that either with clustering (your whole server runs multiple instances that can each be on a separate core) or by creating a set of processes specifically for creating the zip files and then create a work queue in the main process that feeds these other processes work and gets the result back from them. This second option is likely a bit more complex to code than clustering, but it does prioritize the zip file creation so only one core is serving other server needs and all other cores of working on zip file creation. Clustering shares all cores with all server responsibilities.
At the pure server application level, your server can maintain a work queue of all incoming work to be done no matter what kind and it can prioritize that work. For example, if an API call comes in and there are already N zip file requests in the queue, you could immediately fail the API call to keep it from building up on the server. I don't think I'd personally recommend that solution unless your API calls are really heavy operations because it's very hard for a developer to reliably use your API if it regularly just fails on them. They would generally find it better for the API to just be slow sometimes than to regularly fail.
You might not even have to use a queue, you could just use a counter to keep track of how many ZIP file requests were "in process", but you'd have to make absolutely sure the counter was accurate in all cases. If there was ever an accumulating error in the counter, then you might just end up failing all API requests until your server was restarted.

Should each website be its own `node.js` process

We host about 150 websites (possibly scaling to 300+) that we are considering migrating to node.js. Most of the sites are fairly low traffic <1mil pageviews per month.
Should each website be it's own node.js process, or should we serve all websites using the same node.js process (or small set of load balanced processes). Is there a technical limit or a reasonable limit to the number of node processes per server?
Process per site: Feels inefficient, but I don't know if it actually is inefficient. Would ensure one buggy site doesn't affect other sites.
Process per core/small set of processes: Likely higher performance, but what happens when I need to update a sites codebase, won't it take down other sites? Also, code failures in one site would affect other sites.
Ideally, I would prefer one process per site so that we could host all sites from each worker server. That way when load increases we can just spin up another identical worker server and load balance between the two without having to arbitrarily say SiteA goes to ServerA and SiteB goes to ServerB. Any node.js gurus available to offer some wisdom?
All static file requests will be handled likely by Nginx or something like Varnish.
There are a lot of issues at play here. The big picture answer is, it depends... as it always does when you bring in the whole "performance" discussion. That being said, the simplest way to get a solid Node set up is to note the following basic facts about NodeJS, and I will also comment on their implications as they pertain to your questions.
The concurrency you get with Node works really good in certain situations, namely IO heavy operations. What we're really talking about here is minimizing the amount of downtime to wait for the next request. Because of this, Node works really well in an environment where there is one process per core on a machine. Node does really well at maximizing the amount of CPU available to serve requests under heavy load. This being said, if you have literally ZERO other work going on in your even loop, you can see minor performance increases (in terms of max requests/second/processor core) by having multiple node processes per core. But, I've never seen any benefit from increasing this number past 3. Even under circumstances where the entire event loop was literally just a file server.
On the process per site comment. This is a bad idea for many reasons. For one, a well put together node server can process thousands of requests per second. Our (company name omitted) servers, hosted through Amazon EC2 on medium clusters (lots of ram, mid CPU clock, 4 cores), typically fail around 3000 requests per second per cluster. Our servers do a fair bit of CPU work, for simple file servers I'm sure you can do much better. Strictly speaking, sure, per site, you will be able to serve more requests by launching each site in its own process/core/escalating quickly here! But it's not necessary from a cost and over complication of your architecture point of view. What I WOULD recommend, is investing in a setup with a lot of RAM. The ability for your server to cache often requested files will effect your performance infinitely more than launching an abundance of processes for a given machine.
On the whole RAM thing. The number of processes you want to launch for a given core is dependant on two things. One is how much synchronous work done in your event loop. The more synchronous work, the more time between a given request coming in and the event loop being ready to adress the next one. If you have a busy event loop, you will be in a situation where you require more processes/CPU Core. The other thing that can effect this, particularly relevant for file servers, is the amount of RAM. Node runs much better in a high ram environment, but you can say this about ANY file server really... What this has to do with, is the number of active asynchronous operations. One downside of the way node works, is under heavy loads, you can get a large number of event handlers active at once. This is great for concurrency/simplicity, however, if your server is busy waiting around for a lot of async disk/IO to happen it will slow down and crash much sooner than if you had plenty of RAM. If you don't have enough RAM to handle all of these event handlers, you will want to keep to the 1 process/core arrangement. Otherwise, it is easier for Node to spin up many event handlers simultaneously, and again cause you to crash sooner than you would otherwise.
I don't really have enough information to tell you what you SHOULD do. This depends entirely too much on the architecture of your specific server, sites, size of your sites, amount of data... etc. But these three pieces of knowledge are the basic things that help you get the most out of your Node server. To be honest, your idea about load balancing mixed with the considerations above, should do nicely for you. Surely, microoptimizations are possible, but if you do these things, you should easily see requests/second in the thousands before you start experiencing crashes because of DDOS type of conditions.
No, don't do it. Keep it simple! And check out http://12factor.net/.
A few hundred processes is nothing compared to the simplicity you otherwise lose. It would be a terrible decision, on so many levels, to have more than one site (or, "logical application unit") served by a single Node process.
If you're asking this question, you may want to explore Node more before you "migrate" to Node. Error handling and separation of concerns are more complicated in Node than in other situations. Specifically, neither the domain nor cluster APIs are mature. But really it's the philosophy of clean and simple application deployment that you'd be violating. I could go on and on.

"Everything runs in parallel except your code".. wait what?

I am trying to learn Node.js and some of points that I understand:
Node.js does'nt create a seperate process for each request, instead it is just one process which processes all requests.
It is asynchronous which means you can attach a callback to a long-lasting process and continue your rest of the work without waiting for it to finish.
What I really don't understand is author's point in Understanding node.js - "Everything runs in parallel except your code". I have understood the analogy and the code that explains it but still I don't get it what is the distinction between "Everything" and "code". I have more often heard this about node.js.
Also, people pat node.js for its efficiency since memory overhead for one concurrent connection may be as low as 8KB but what about CPU load. Does node.js make it way less as compared to PHP+Apache?
Node.js uses a single thread any time it is running the JavaScript in your application. Tasks that are asynchronous (network, filesystem, etc.) are all handled on separate threads automatically for you. This means that you get much of the usefulness of a multithreaded application without having to worry about all of the trouble that comes with locking resources and what not.
Node is not a tool for every job. It is ideal for applications that are IO bound. For example, if your application required a ton of work to process templates and what not, Node probably isn't for you. If instead you're just shuffling data around, Node can be very effective.
The reason Node is often quoted as being faster than servers like Apache is that it doesn't create a thread and all of the resources with it to handling requests. In Apache, most of the time, that thread handling requests is waiting on network or filesystem data. While it does this, it is wasting resources. With Node, only one thread processes those requests (in your application). Again, this is great for some things, but if you have a lot of processing to do, Node would not be effective as it can really only handle a single request at a time in these situations.
This video does a pretty good job of explaining: http://www.youtube.com/watch?v=F6k8lTrAE2g&feature=youtube_gdata
Everything runs in parallel except your code.
It means if you do
while(true){}
anywhere in your code the entire node application will stop. While the code you write executes, nothing else does. Requests will not be handled, responses won't be returned, nothing. You have to be extremely careful to not hog the cpu in node.
but what about CPU load?
That completely depends on the nature of your application and the load. If your app is busy, it'll use more cpu.
Imagine a busy intersection with a traffic cop in the middle. When the cop is doing his job properly, hundreds of cars can pass through the intersection in a very fast and efficient way.
If the cop starts receiving and answering SMS messages on his cell while doing traffic, then things might go out of hand really quickly.
The traffic cop is your node.js app, and the time he spends doing SMS is what the author refers to as "your code".
In other words: node.js performance will shine the more you use it as a traffic cop. The more you start using it to do things other than pulling and pushing data (i.e.: sorting a list of numbers, rendering an html template, etc.), the more your capacity to accept and process new connections quickly will suffer.
"Everything" refers to everything else besides your code. For example, the stuff that handles HTTP. Another way to say the same thing is "your code doesn't wait for node.js to do stuff, like send data over TCP, because that's done asynchronously."
To answer your second question, I don't know which has less CPU load, I'm guessing they're similar. Node.js' touted advantage is the CPU is better utilized due to the aforementioned asynchronicity.

Wait for critical sections to complete in a graceful node.js shutdown

I want to update my node application on production, but users are using it for things like credit card transactions.
I run supervisor, but I would like to wait until all critical sections (like saving data or sending important information) are complete before it restarts.
Check out up by LearnBoost.
Zero-downtime reloads built on top of the distribute load balancer.
Read more from here:
http://www.devthought.com/2012/01/29/staying-up-with-node-js/
Another one is ncluster.
Creating a programmed dowtime seems the most straightforward thing to do, just notify the users and stop critical transactions a few minutes before the downtime, always choose the right time to go offline and be sure to be only a small timeframe away from your users.
You could also delegate to more applications the various sections of your app, for example process payments in a separate process you can message with a queue.
This clearly depends on your needs, by te way be sure to disclose a programmed downtime to your users, they will be happy to come back later.

What Use are Threads Outside of Parallel Problems on MultiCore Systems?

Threads make the design, implementation and debugging of a program significantly more difficult.
Yet many people seem to think that every task in a program that can be threaded should be threaded, even on a single core system.
I can understand threading something like an MPEG2 decoder that's going to run on a multicore cpu ( which I've done ), but what can justify the significant development costs threading entails when you're talking about a single core system or even a multicore system if your task doesn't gain significant performance from a parallel implementation?
Or more succinctly, what kinds of non-performance related problems justify threading?
Edit
Well I just ran across one instance that's not CPU limited but threads make a big difference:
TCP, HTTP and the Multi-Threading Sweet Spot
Multiple threads are pretty useful when trying to max out your bandwidth to another peer over a high latency network connection. Non-blocking I/O would use significantly less local CPU resources, but would be much more difficult to design and implement.
Performing a CPU intensive task without blocking the user interface, for example.
Any application in which you may be waiting around for a resource (for example, blocking I/O from network sockets or disk devices) can benefit from threading.
In that case the thread blocking on the slow operation can be put to sleep while other threads continue to run (including, under some operating systems, the GUI thread which, if the OS cannot contact it for a while, will offer the use the chance to destroy it, thinking it's deadlocked somehow).
So it's not just for multi-core machines at all.
An interesting example is a webserver - you need to be able to handle multiple incoming connections that have nothing to do with each other.
what kinds of non-performance related
problems justify threading?
Web applications are the classic example. Each user request is conceptually a new thread. Nothing to do with performance, it's just a natural fit for the design.
Blocking code is usually much simpler to write and easier to read (and therefore maintain) than non-blocking code. Yet, using blocking code limits you to a single execution path and also locks out things like user interface (mentioned) and other IO ports. Threading is an elegant solution in these cases.
Another case when multithreading is to be considered is when you have several near-synchronous IO channels that should be managed: using multiple threads (and usually a local message queue) allows for much clearer code.
Here are a couple of specific and simple scenarios where I have launched threads...
A long running report request by the user. When the report is submitted, it is placed in a queue to be processed by a separate thread. The user can then go on within the application and check back later to see the status of their report, they aren't left with a "Processing..." page or icon.
A thread that iterates cache storage, removing data that has expired or no longer needed. The thread's job within the application is independent of any processing for a specific user, but part of the overall application run-time maintenance.
although, not specifically a threading scenario, logging within our web site is handed off to a parallel process, so the throughput of the web site isn't hindered by the time it takes to record log data.
I agree that threading just for threadings sake isn't a good idea and it can introduce problems within your application if isn't done properly, but it is an extremely useful tool for solving some problems.
Whenever you need to call some external component (be it a database query, a 3. party library, an operating system primitive etc.) that only provides a synchronous/blocking interface or using the asynchronous interface not worth the extra trouble and pain - and you also need some form of concurrency - e.g. serving multiple clients in a server or keep the GUI still responsive.
Well, how do you know if you're app is going to run on a multi-core system or not?
Beyond that, there are a lot of processes that take up time, but don't require the CPU. Such as writing to a disk or networking. Who wants to push a button in a GUI and then have to sit there and wait for a network connection. Even on a single core machine, having a separate IO thread greatly improves user experience. You always at least want a separate thread for the UI.
Yet many people seem to think that
every task in a program that can be
threaded should be threaded, even on a
single core system.
"Many people"... Who?
Also from my experience many many programs that should be multithreaded aren't (especially games.. I have an i7 and yet most games still use only 1 of my cores), so I'm not sure what you're talking about. Definitely programs like calc.exe are not multithread (or, if they are, 1 thread does 99% of the work).
Performing a CPU intensive task
without blocking the user interface,
for example.
Yes, this is true but this is fairly easy to implement and it's not what the OP is referring to (since, in this case, 1 thread does almost all the work and you only need very few mutexes)

Resources