Type class Read, is it posibble to read a function by it name? - haskell

Suppose I have this function:
squared x = x ** 2
and I want to read it from the console, and apply it. Is possible to do something like this?:
gchi> (read("squared) :: Int -> Int) 4

No; in general, this is not possible. To see why, think about a few of the situations which could occur if this functionality existed:
Let’s say you redefine (+) a b = a - b. Now, should read "(+)" be the (+) from the Prelude, or your redefined (+) operator?
If you do read "foobar", and foobar has not yet been defined as a function, then what should this return? Then if foobar is defined somewhere else in the module, should this return value suddenly change?
If you add import Prelude () to the top of your program, which removes all of the imports from Prelude, should read "preludeFunctionName" stop working?
Now, none of these problems are dealbreakers in and of themselves — in another language, you could still define a read function taking those into account. The problem in this case is referential transparency : the property that a non-IO function should always return the same output given the same input(s). Since the type of read is Read a => String -> a, as opposed to Read a => String -> IO a, you can’t make an instance of read like you want, given that the above function can give a different answer depending on the exact context in which it is run. (e.g. read "foobar" and let foobar = (+1) in read "foobar" would give different answers to the same function call.)
On the other hand, if you still want to have this functionality, there is one way of getting it. The hint package allows Haskell code to be interpreted at runtime, and so you can use this functionality to write a function like this:
-- Warning: the following code is untested
-- Please comment if you find any errors!
import Language.Haskell.Interpreter
readFn :: Typeable a
=> [ModuleName] -- ^ Modules to search
-> String -- ^ Function to read
-> a -- ^ Witness for the type a
-> IO (Either InterpreterError a)
readFn m f w = runInterpreter $ do
setImports m
interpret f w
The above function can be used as follows:
readFn ["Prelude"] "(+)" (as :: Num a => a -> a -> a)
Where as is from Language.Haskell.Interpreter.

Related

When do I need type annotations?

Consider these functions
{-# LANGUAGE TypeFamilies #-}
tryMe :: Maybe Int -> Int -> Int
tryMe (Just a) b = a
tryMe Nothing b = b
class Test a where
type TT a
doIt :: TT a -> a -> a
instance Test Int where
type TT Int = Maybe Int
doIt (Just a) b = a
doIt (Nothing) b = b
This works
main = putStrLn $ show $ tryMe (Just 2) 25
This doesn't
main = putStrLn $ show $ doIt (Just 2) 25
{-
• Couldn't match expected type ‘TT a0’ with actual type ‘Maybe a1’
The type variables ‘a0’, ‘a1’ are ambiguous
-}
But then, if I specify the type for the second argument it does work
main = putStrLn $ show $ doIt (Just 2) 25::Int
The type signature for both functions seem to be the same. Why do I need to annotate the second parameter for the type class function? Also, if I annotate only the first parameter to Maybe Int it still doesn't work. Why?
When do I need to cast types in Haskell?
Only in very obscure, pseudo-dependently-typed settings where the compiler can't proove that two types are equal but you know they are; in this case you can unsafeCoerce them. (Which is like C++' reinterpret_cast, i.e. it completely circumvents the type system and just treats a memory location as if it contains the type you've told it. This is very unsafe indeed!)
However, that's not what you're talking about here at all. Adding a local signature like ::Int does not perform any cast, it merely adds a hint to the type checker. That such a hint is needed shouldn't be surprising: you didn't specify anywhere what a is supposed to be; show is polymorphic in its input and doIt polymorphic in its output. But the compiler must know what it is before it can resolve the associated TT; choosing the wrong a might lead to completely different behaviour from the intended.
The more surprising thing is, really, that sometimes you can omit such signatures. The reason this is possible is that Haskell, and more so GHCi, has defaulting rules. When you write e.g. show 3, you again have an ambiguous a type variable, but GHC recognises that the Num constraint can be “naturally” fulfilled by the Integer type, so it just takes that pick.
Defaulting rules are handy when quickly evaluating something at the REPL, but they are fiddly to rely on, hence I recommend you never do it in a proper program.
Now, that doesn't mean you should always add :: Int signatures to any subexpression. It does mean that, as a rule, you should aim for making function arguments always less polymorphic than the results. What I mean by that: any local type variables should, if possible, be deducable from the environment. Then it's sufficient to specify the type of the final end result.
Unfortunately, show violates that condition, because its argument is polymorphic with a variable a that doesn't appear in the result at all. So this is one of the functions where you don't get around having some signature.
All this discussion is fine, but it hasn't yet been stated explicitly that in Haskell numeric literals are polymorphic. You probably knew that, but may not have realized that it has bearing on this question. In the expression
doIt (Just 2) 25
25 does not have type Int, it has type Num a => a — that is, its type is just some numeric type, awaiting extra information to pin it down exactly. And what makes this tricky is that the specific choice might affect the type of the first argument. Thus amalloy's comment
GHC is worried that someone might define an instance Test Integer, in which case the choice of instance will be ambiguous.
When you give that information — which can come from either the argument or the result type (because of the a -> a part of doIt's signature) — by writing either of
doIt (Just 2) (25 :: Int)
doIt (Just 2) 25 :: Int -- N.B. this annotates the type of the whole expression
then the specific instance is known.
Note that you do not need type families to produce this behavior. This is par for the course in typeclass resolution. The following code will produce the same error for the same reason.
class Foo a where
foo :: a -> a
main = print $ foo 42
You might be wondering why this doesn't happen with something like
main = print 42
which is a good question, that leftroundabout has already addressed. It has to do with Haskell's defaulting rules, which are so specialized that I consider them little more than a hack.
With this expression:
putStrLn $ show $ tryMe (Just 2) 25
We've got this starting information to work from:
putStrLn :: String -> IO ()
show :: Show a => a -> String
tryMe :: Maybe Int -> Int -> Int
Just :: b -> Maybe b
2 :: Num c => c
25 :: Num d => d
(where I've used different type variables everywhere, so we can more easily consider them all at once in the same scope)
The job of the type-checker is basically to find types to choose for all of those variables, so and then make sure that the argument and result types line up, and that all the required type class instances exist.
Here we can see that tryMe applied to two arguments is going to be an Int, so a (used as input to show) must be Int. That requires that there is a Show Int instance; indeed there is, so we're done with a.
Similarly tryMe wants a Maybe Int where we have the result of applying Just. So b must be Int, and our use of Just is Int -> Maybe Int.
Just was applied to 2 :: Num c => c. We've decided it must be applied to an Int, so c must be Int. We can do that if we have Num Int, and we do, so c is dealt with.
That leaves 25 :: Num d => d. It's used as the second argument to tryMe, which is expecting an Int, so d must be Int (again discharging the Num constraint).
Then we just have to make sure all the argument and result types line up, which is pretty obvious. This is mostly rehashing the above since we made them line up by choosing the only possible value of the type variables, so I won't get into it in detail.
Now, what's different about this?
putStrLn $ show $ doIt (Just 2) 25
Well, lets look at all the pieces again:
putStrLn :: String -> IO ()
show :: Show a => a -> String
doIt :: Test t => TT t -> t -> t
Just :: b -> Maybe b
2 :: Num c => c
25 :: Num d => d
The input to show is the result of applying doIt to two arguments, so it is t. So we know that a and t are the same type, which means we need Show t, but we don't know what t is yet so we'll have to come back to that.
The result of applying Just is used where we want TT t. So we know that Maybe b must be TT t, and therefore Just :: _b -> TT t. I've written _b using GHC's partial type signature syntax, because this _b is not like the b we had before. When we had Just :: b -> Maybe b we could pick any type we liked for b and Just could have that type. But now we need some specific but unknown type _b such that TT t is Maybe _b. We don't have enough information to know what that type is yet, because without knowing t we don't know which instance's definition of TT t we're using.
The argument of Just is 2 :: Num c => c. So we can tell that c must also be _b, and this also means we're going to need a Num _b instance. But since we don't know what _b is yet we can't check whether there's a Num instance for it. We'll come back to it later.
And finally the 25 :: Num d => d is used where doIt wants a t. Okay, so d is also t, and we need a Num t instance. Again, we still don't know what t is, so we can't check this.
So all up, we've figured out this:
putStrLn :: String -> IO ()
show :: t -> String
doIt :: TT t -> t -> t
Just :: _b -> TT t
2 :: _b
25 :: t
And have also these constraints waiting to be solved:
Test t, Num t, Num _b, Show t, (Maybe _b) ~ (TT t)
(If you haven't seen it before, ~ is how we write a constraint that two type expressions must be the same thing)
And we're stuck. There's nothing further we can figure out here, so GHC is going to report a type error. The particular error message you quoted is complaining that we can't tell that TT t and Maybe _b are the same (it calls the type variables a0 and a1), since we didn't have enough information to select concrete types for them (they are ambiguous).
If we add some extra type signatures for parts of the expression, we can go further. Adding 25 :: Int1 immediately lets us read off that t is Int. Now we can get somewhere! Lets patch that into the constrints we had yet to solve:
Test Int, Num Int, Num _b, Show Int, (Maybe _b) ~ (TT Int)
Num Int and Show Int are obvious and built in. We've got Test Int too, and that gives us the definition TT Int = Maybe Int. So (Maybe _b) ~ (Maybe Int), and therefore _b is Int too, which also allows us to discharge that Num _b constraint (it's Num Int again). And again, it's easy now to verify all the argument and result types match up, since we've filled in all the type variables to concrete types.
But why didn't your other attempt work? Lets go back to as far as we could get with no additional type annotation:
putStrLn :: String -> IO ()
show :: t -> String
doIt :: TT t -> t -> t
Just :: _b -> TT t
2 :: _b
25 :: t
Also needing to solve these constraints:
Test t, Num t, Num _b, Show t, (Maybe _b) ~ (TT t)
Then add Just 2 :: Maybe Int. Since we know that's also Maybe _b and also TT t, this tells us that _b is Int. We also now know we're looking for a Test instance that gives us TT t = Maybe Int. But that doesn't actually determine what t is! It's possible that there could also be:
instance Test Double where
type TT Double = Maybe Int
doIt (Just a) _ = fromIntegral a
doIt Nothing b = b
Now it would be valid to choose t as either Int or Double; either would work fine with your code (since the 25 could also be a Double), but would print different things!
It's tempting to complain that because there's only one instance for t where TT t = Maybe Int that we should choose that one. But the instance selection logic is defined not to guess this way. If you're in a situation where it's possible that another matching instance should exist, but isn't there due to an error in the code (forgot to import the module where it's defined, for example), then it doesn't commit to the only matching instance it can see. It only chooses an instance when it knows no other instance could possibly apply.2
So the "there's only one instance where TT t = Maybe Int" argument doesn't let GHC work backward to settle that t could be Int.
And in general with type families you can only "work forwards"; if you know the type you're applying a type family to you can tell from that what the resulting type should be, but if you know the resulting type this doesn't identify the input type(s). This is often surprising, since ordinary type constructors do let us "work backwards" this way; we used this above to conclude from Maybe _b = Maybe Int that _b = Int. This only works because with new data declarations, applying the type constructor always preserves the argument type in the resulting type (e.g. when we apply Maybe to Int, the resulting type is Maybe Int). The same logic doesn't work with type families, because there could be multiple type family instances mapping to the same type, and even when there isn't there is no requirement that there's an identifiable pattern connecting something in the resulting type to the input type (I could have type TT Char = Maybe (Int -> Double, Bool).
So you'll often find that when you need to add a type annotation, you'll often find that adding one in a place whose type is the result of a type family doesn't work, and you'll need to pin down the input to the type family instead (or something else that is required to be the same type as it).
1 Note that the line you quoted as working in your question main = putStrLn $ show $ doIt (Just 2) 25::Int does not actually work. The :: Int signature binds "as far out as possible", so you're actually claiming that the entire expression putStrLn $ show $ doIt (Just 2) 25 is of type Int, when it must be of type IO (). I'm assuming when you really checked it you put brackets around 25 :: Int, so putStrLn $ show $ doIt (Just 2) (25 :: Int).
2 There are specific rules about what GHC considers "certain knowledge" that there could not possibly be any other matching instances. I won't get into them in detail, but basically when you have instance Constraints a => SomeClass (T a), it has to be able to unambiguously pick an instance only by considering the SomeClass (T a) bit; it can't look at the constraints left of the => arrow.

Parse error in a case statement

I am trying to convert a Maybe Int to an Int in Haskell like this:
convert :: Maybe Int -> Int
convert mx = case mx of
Just x -> x
Nothing -> error "error message"
When I compile it, Haskell tells me: parse error on input 'Nothing'.
I need this, because I want to get the Index of an element in a list with the elem.Index function from the Data.List module and then use this index on the take function. My problem is that elemIndex returns a Maybe Int, but take needs an Int.
This is a whitespace problem. The case clauses need to be indented to the same level.
convert :: Maybe Int -> Int
convert mx = case mx of
Just x -> x
Nothing -> error "error message"
Remember to use only spaces, no tabs.
To add to #leftaroundabout's answer, I think I might provide you with some other options.
First off, you shouldn't make unsafe things like this: your program will fail. It's much cleaner to keep it as a Maybe Int and operate as such, safely. In other words, this was a simple parse error, but making incomplete functions like this may cause far greater problems in the future.
The problem you've encountered it, how can I do that?
We might make a better function, like this:
mapMaybe :: (a -> b) -> Maybe a -> Maybe b
mapMaybe f m = case m of
Just a -> f a
Nothing -> Nothing
Which would allow you to write:
λ> (+ 15) `mapMaybe` Just 9
Just 24
However, there is a function called fmap, which 'maps' a function over certain data-structures, Maybe included:
λ> (== 32) `fmap` Just 9
Just False
and if you have imported Control.Applicative, there is a nice operator synonym for it:
λ> show <$> Just 9
Just "9"
If you want to know more about these data-structures, called Functors, I would recommend reading Learn-you a Haskell.

Why can't I use the type `Show a => [Something -> a]`?

I have a record type say
data Rec {
recNumber :: Int
, recName :: String
-- more fields of various types
}
And I want to write a toString function for Rec :
recToString :: Rec -> String
recToString r = intercalate "\t" $ map ($ r) fields
where fields = [show . recNumber, show . recName]
This works. fields has type [Rec -> String]. But I'm lazy and I would prefer writing
recToString r = intercalate "\t" $ map (\f -> show $ f r) fields
where fields = [recNumber, recName]
But this doesn't work. Intuitively I would say fields has type Show a => [Rec -> a] and this should be ok. But Haskell doesn't allow it.
I'd like to understand what is going on here. Would I be right if I said that in the first case I get a list of functions such that the 2 instances of show are actually not the same function, but Haskell is able to determine which is which at compile time (which is why it's ok).
[show . recNumber, show . recName]
^-- This is show in instance Show Number
^-- This is show in instance Show String
Whereas in the second case, I only have one literal use of show in the code, and that would have to refer to multiple instances, not determined at compile time ?
map (\f -> show $ f r) fields
^-- Must be both instances at the same time
Can someone help me understand this ? And also are there workarounds or type system expansions that allow this ?
The type signature doesn't say what you think it says.
This seems to be a common misunderstanding. Consider the function
foo :: Show a => Rec -> a
People frequently seem to think this means that "foo can return any type that it wants to, so long as that type supports Show". It doesn't.
What it actually means is that foo must be able to return any possible type, because the caller gets to choose what the return type should be.
A few moments' thought will reveal that foo actually cannot exist. There is no way to turn a Rec into any possible type that can ever exist. It can't be done.
People often try to do something like Show a => [a] to mean "a list of mixed types but they all have Show". That obviously doesn't work; this type actually means that the list elements can be any type, but they still have to be all the same.
What you're trying to do seems reasonable enough. Unfortunately, I think your first example is about as close as you can get. You could try using tuples and lenses to get around this. You could try using Template Haskell instead. But unless you've got a hell of a lot of fields, it's probably not even worth the effort.
The type you actually want is not:
Show a => [Rec -> a]
Any type declaration with unbound type variables has an implicit forall. The above is equivalent to:
forall a. Show a => [Rec -> a]
This isn't what you wan't, because the a must be specialized to a single type for the entire list. (By the caller, to any one type they choose, as MathematicalOrchid points out.) Because you want the a of each element in the list to be able to be instantiated differently... what you are actually seeking is an existential type.
[exists a. Show a => Rec -> a]
You are wishing for a form of subtyping that Haskell does not support very well. The above syntax is not supported at all by GHC. You can use newtypes to sort of accomplish this:
{-# LANGUAGE ExistentialQuantification #-}
newtype Showy = forall a. Show a => Showy a
fields :: [Rec -> Showy]
fields = [Showy . recNumber, Showy . recName]
But unfortunatley, that is just as tedious as converting directly to strings, isn't it?
I don't believe that lens is capable of getting around this particular weakness of the Haskell type system:
recToString :: Rec -> String
recToString r = intercalate "\t" $ toListOf (each . to fieldShown) fields
where fields = (recNumber, recName)
fieldShown f = show (f r)
-- error: Couldn't match type Int with [Char]
Suppose the fields do have the same type:
fields = [recNumber, recNumber]
Then it works, and Haskell figures out which show function instance to use at compile time; it doesn't have to look it up dynamically.
If you manually write out show each time, as in your original example, then Haskell can determine the correct instance for each call to show at compile time.
As for existentials... it depends on implementation, but presumably, the compiler cannot determine which instance to use statically, so a dynamic lookup will be used instead.
I'd like to suggest something very simple instead:
recToString r = intercalate "\t" [s recNumber, s recName]
where s f = show (f r)
All the elements of a list in Haskell must have the same type, so a list containing one Int and one String simply cannot exist. It is possible to get around this in GHC using existential types, but you probably shouldn't (this use of existentials is widely considered an anti-pattern, and it doesn't tend to perform terribly well). Another option would be to switch from a list to a tuple, and use some weird stuff from the lens package to map over both parts. It might even work.

How to convert IO Int to String in Haskell?

I'm learning to use input and output in Haskell. I'm trying to generate a random number and output it to another file. The problem is that the random number seems to be returning an IO Int, something that I can't convert to a String using show.
Could someone give me a pointer here?
It's helpful if you show us the code you've written that isn't working.
Anyway, you are in a do block and have written something like this, yes?
main = do
...
writeFile "some-file.txt" (show generateRandomNumberSomehow)
...
You should instead do something like this:
main = do
...
randomNumber <- generateRandomNumberSomehow
writeFile "some-file.txt" (show randomNumber)
...
The <- operator binds the result of the IO Int value on the right to the Int-valued variable on the left. (Yes, you can also use this to bind the result of an IO String value to a String-valued variable, etc.)
This syntax is only valid inside a do block. It's important to note that the do block will itself result in an IO value --- you can't launder away the IO-ness.
dave4420's answer is what you want here. It uses the fact that IO is a Monad; that's why you can use the do notation.
However, I think it's worth mentioning that the concept of "applying a function to a value that's not 'open', but inside some wrapper" is actually more general than IO and more general than monads. It's what we have the Functor class for.
For any functor f (this could, for instance, be Maybe or [] or IO), when you have some value
wrapped :: f t (for instance wrapped :: Maybe Int), you can use fmap to apply a function
t -> t' to it (like show :: Int -> String) and get a
wrappedApplied :: f t' (like wrappedApplied :: Maybe String).
In your example, it would be
genRandomNumAsString :: IO String
genRandomNumAsString = fmap show genRandomNumPlain

haskell load module in list

Hey haskellers and haskellettes,
is it possible to load a module functions in a list.
in my concrete case i have a list of functions all checked with or
checkRules :: [Nucleotide] -> Bool
checkRules nucs = or $ map ($ nucs) [checkRule1, checkRule2]
i do import checkRule1 and checkRule2 from a seperate module - i don't know if i will need more of them in the future.
i'd like to have the same functionality look something like
-- import all functions from Rules as rules where
-- :t rules ~~> [([Nucleotide] -> Bool)]
checkRules :: [Nucleotide] -> Bool
checkRules nucs = or $ map ($ nucs) rules
the program sorts Pseudo Nucleotide Sequences in viable and nonviable squences according to given rules.
thanks in advance ε/2
Addendum:
So do i think right - i need:
genList :: File -> TypeSignature -> [TypeSignature]
chckfun :: (a->b) -> TypeSignature -> Bool
at compile time.
but i can't generate a list of all functions in the module - as they most probably will have not the same type signature and hence not all fit in one list. so i cannot filter given list with chckfun.
In order to do this i either want to check the written type signatures in the source file (?) or the inferenced types given by the compiler(?).
another problem that comes to my mind is: not every function written in the source file might get exported ?
Is this a problem a haskell beginner should try to solve after 5 months of learning - my brain is shaped like a klein's bottle after all this "compile time thinking".
There is a nice package on Hackage just for this: language-haskell-extract. In particular, the Template Haskell function functionExtractor takes a regular expression and returns a list of the matching top level bindings as (name, value) pairs. As long as they all have matching types, you're good to go.
{-# LANGUAGE TemplateHaskell #-}
import Language.Haskell.Extract
myFoo = "Hello"
myBar = "World"
allMyStuff = $(functionExtractor "^my")
main = print allMyStuff
Output:
[("myFoo", "Hello"), ("myBar", "World")]

Resources