How Keras really fits the models via epochs - keras

I am a bit confused on how Keras fits the models. In general, Keras models are fitted by simply using model.fit(...) something like the following:
model.fit(X_train, y_train, epochs=300, batch_size=64, validation_data=(X_test, y_test))
My question is: Because I stated the testing data by the argument validation_data=(X_test, y_test), does it mean that each epoch is independent? In other words, I understand that at each epoch, Keras train the model using the training data (after getting shuffled) followed by testing the trained model using the provided validation_data. If that's the case, then no matter how many epochs I choose, I only take the results of the last epoch!!
If this scenario is correct, so we do we need multiple epoches? Unless these epoches are dependent somwhow where each epoch uses the same NN weights from the previous epoch, correct?
Thank you

When Keras fit your model it pass throught all the dataset at each epoch by a step corresponding to your batch_size.
For exemple if you have a dataset of 1000 items and a batch_size of 8, the weight of your model will be updated by using 8 items and this until it have seen all your data set.
At the end of that epoch, the model will try to do a prediction on your validation set.
If we have made only one epoch, it would mean that the weight of the model is updated only once per element (because it only "saw" one time the complete dataset).
But in order to minimize the loss function and by backpropagation, we need to update those weights multiple times in order to reach the optimum loss, so pass throught all the dataset multiple times, in other word, multiple epochs.
I hope i'm clear, ask if you need more informations.

Related

LSTM Autoencoder for Anomaly detection in time series, correct way to fit model

I'm trying to find correct examples of using LSTM Autoencoder for defining anomalies in time series data in internet and see a lot of examples, where LSTM Autoencoder model are fitted with labels, which are future time steps for feature sequences (as for usual time series forecasting with LSTM), but I suppose, that this kind of model should be trained with labels which are the same sequence as sequence of features (previous time steps).
The first link in the google by this searching for example - https://towardsdatascience.com/time-series-of-price-anomaly-detection-with-lstm-11a12ba4f6d9
1.This function defines the way to get labels (y feature)
def create_sequences(X, **y**, time_steps=TIME_STEPS):
Xs, ys = [], []
for i in range(len(X)-time_steps):
Xs.append(X.iloc[i:(i+time_steps)].values)
ys.append(y.iloc**[i+time_steps]**)
return np.array(Xs), np.array(ys)
X_train, **y_train** = create_sequences(train[['Close']], train['Close'])
X_test, y_test = create_sequences(test[['Close']], test['Close'])
2.Model is fitted as follow
history = model.fit(X_train, **y_train**, epochs=100, batch_size=32, validation_split=0.1,
callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=3, mode='min')], shuffle=False)
Could you kindly comment the way how Autoencoder is implemented in the link on towardsdatascience.com/?
Is it correct method or model should be fitted following way ?
model.fit(X_train,X_train)
Thanks in advance!
This is time series auto-encoder. If you want to predict for future, it goes this way. The auto-encoder / machine learning model fitting is different for different problems and their solutions. You cannot train and fit one model / workflow for all problems. Time-series / time lapse can be what we already collected data for time period and predict, it can be for data collected and future prediction. Both are differently constructed. Like time series data for sub surface earth is differently modeled, and for weather forecast is differently. One model cannot work for both.
By definition an autoencoder is any model attempting at reproducing it's input, independent of the type of architecture (LSTM, CNN,...).
Framed this way it is a unspervised task so the training would be : model.fit(X_train,X_train)
Now, what she does in the article you linked, is to use a common architecture for LSTM autoencoder but applied to timeseries forecasting:
model.add(LSTM(128, input_shape=(X_train.shape[1], X_train.shape[2])))
model.add(RepeatVector(X_train.shape[1]))
model.add(LSTM(128, return_sequences=True))
model.add(TimeDistributed(Dense(X_train.shape[2])))
She's pre-processing the data in a way to get X_train = [x(t-seq)....x(t)] and y_train = x(t+1)
for i in range(len(X)-time_steps):
Xs.append(X.iloc[i:(i+time_steps)].values)
ys.append(y.iloc[i+time_steps])
So the model does not per-se reproduce the input it's fed, but it doesn't mean it's not a valid implementation since it produce valuable prediction.

Can I use BERT as a feature extractor without any finetuning on my specific data set?

I'm trying to solve a multilabel classification task of 10 classes with a relatively balanced training set consists of ~25K samples and an evaluation set consists of ~5K samples.
I'm using the huggingface:
model = transformers.BertForSequenceClassification.from_pretrained(...
and obtain quite nice results (ROC AUC = 0.98).
However, I'm witnessing some odd behavior which I don't seem to make sense of -
I add the following lines of code:
for param in model.bert.parameters():
param.requires_grad = False
while making sure that the other layers of the model are learned, that is:
[param[0] for param in model.named_parameters() if param[1].requires_grad == True]
gives
['classifier.weight', 'classifier.bias']
Training the model when configured like so, yields some embarrassingly poor results (ROC AUC = 0.59).
I was working under the assumption that an out-of-the-box pre-trained BERT model (without any fine-tuning) should serve as a relatively good feature extractor for the classification layers. So, where do I got it wrong?
From my experience, you are going wrong in your assumption
an out-of-the-box pre-trained BERT model (without any fine-tuning) should serve as a relatively good feature extractor for the classification layers.
I have noticed similar experiences when trying to use BERT's output layer as a word embedding value with little-to-no fine-tuning, which also gave very poor results; and this also makes sense, since you effectively have 768*num_classes connections in the simplest form of output layer. Compared to the millions of parameters of BERT, this gives you an almost negligible amount of control over intense model complexity. However, I also want to cautiously point to overfitted results when training your full model, although I'm sure you are aware of that.
The entire idea of BERT is that it is very cheap to fine-tune your model, so to get ideal results, I would advise against freezing any of the layers. The one instance in which it can be helpful to disable at least partial layers would be the embedding component, depending on the model's vocabulary size (~30k for BERT-base).
I think the following will help in demystifying the odd behavior I reported here earlier –
First, as it turned out, when freezing the BERT layers (and using an out-of-the-box pre-trained BERT model without any fine-tuning), the number of training epochs required for the classification layer is far greater than that needed when allowing all layers to be learned.
For example,
Without freezing the BERT layers, I’ve reached:
ROC AUC = 0.98, train loss = 0.0988, validation loss = 0.0501 # end of epoch 1
ROC AUC = 0.99, train loss = 0.0484, validation loss = 0.0433 # end of epoch 2
Overfitting, train loss = 0.0270, validation loss = 0.0423 # end of epoch 3
Whereas, when freezing the BERT layers, I’ve reached:
ROC AUC = 0.77, train loss = 0.2509, validation loss = 0.2491 # end of epoch 10
ROC AUC = 0.89, train loss = 0.1743, validation loss = 0.1722 # end of epoch 100
ROC AUC = 0.93, train loss = 0.1452, validation loss = 0.1363 # end of epoch 1000
The (probable) conclusion that arises from these results is that working with an out-of-the-box pre-trained BERT model as a feature extractor (that is, freezing its layers) while learning only the classification layer suffers from underfitting.
This is demonstrated in two ways:
First, after running 1000 epochs, the model still hasn’t finished learning (the training loss is still higher than the validation loss).
Second, after running 1000 epochs, the loss values are still higher than the values achieved with the non-freeze version as early as the 1’st epoch.
To sum it up, #dennlinger, I think I completely agree with you on this:
The entire idea of BERT is that it is very cheap to fine-tune your model, so to get ideal results, I would advise against freezing any of the layers.

Early Stopping, Model has gone through how many epochs?

I am using Keras. I am training my Neural Network and using Early Stopping. My patience is 10 and the epoch with the lowest validation loss is 15. My network runs til 25 epochs and stops however my model is the one with 25 epochs not 15 if I understand correctly
Is there an easy way to revert to the 15 epoch model or do I need to re-instantiate the model and run 15 epochs?
Yes, there is one, the restore_best_weights parameter in the EarlyStopping callback, set this to True and Keras will keep track of the weights producing the best loss:
callback = EarlyStopping(..., restore_best_weights=True)
See all the parameters for this callback here.
Yes, you get the model (weights) corresponding to the epoch when it stops. A commonly used strategy is to save the model whenever the validation loss/acc improves.
Early Stopping doesn't work the way you are thinking, that it should return the lowest loss or highest accuracy model, it works if there is no improvement in model accuracy or loss, for about x epochs (10 in your case, the patience parameter) then it will stop.
you should use callback modelcheckpoint functions instead e.g.
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=False, mode='auto', period=1)
https://keras.io/callbacks/
This will save or checkpoint best model encountered during the training history.

Multivariate LSTM Forecast Loss and evaluation

I have a CNN-RNN model architecture with Bidirectional LSTMS for time series regression problem. My loss does not converge over 50 epochs. Each epoch has 20k samples. The loss keeps bouncing between 0.001 - 0.01.
batch_size=1
epochs = 50
model.compile(loss='mean_squared_error', optimizer='adam')
trainingHistory=model.fit(trainX,trainY,epochs=epochs,batch_size=batch_size,shuffle=False)
I tried to train the model with incorrectly paired X and Y data for which the
loss stays around 0.5, is it reasonable conclusion that my X and Y
have a non linear relationship which can be learned by my model over
more epochs ?
The predictions of my model capture the pattern but with an offset, I use dynamic time warping distance to manually check the accuracy of predictions, is there a better way ?
Model :
model = Sequential()
model.add(LSTM(units=128, dropout=0.05, recurrent_dropout=0.35, return_sequences=True, batch_input_shape=(batch_size,featureSteps,input_dim)))
model.add(LSTM(units=32, dropout=0.05, recurrent_dropout=0.35, return_sequences=False))
model.add(Dense(units=2, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
If you tested with:
Wrong data: loss ~0.5
Correct data: loss ~0.01
Then your model is actually cabable of learning something.
There are some possibilities there:
Your output data does not fit in the range of the last layer's activation
Your model reached a limit for the current learning rate (gradient update steps are too big and can't improve the model anymore).
Your model is not good enough for the task.
Your data has some degree of random factors
Case 1:
Make sure your Y is within the range of your last activation function.
For a tanh (the LSTM's default), all Y data should be between -1 and + 1
For a sigmoid, between 0 and 1
For a softmax, between 0 and 1, but make sure your last dimension is not 1, otherwise all results will be 1, always.
For a relu, between 0 and infinity
For linear, any value
Convergence goes better if you have a limited activation instead of one that goes to infinity.
In the first case, you can recompile (after training) the model with a lower learning rate, usually we divide it by 10, where the default is 0.0001:
Case 2:
If data is ok, try decreasing the learning rate after your model stagnates.
The default learning rate for adam is 0.0001, we often divide it by 10:
from keras.optimizers import Adam
#after training enough with the default value:
model.compile(loss='mse', optimizer=Adam(lr=0.00001)
trainingHistory2 = model.fit(.........)
#you can even do this again if you notice that the loss decreased and stopped again:
model.compile(loss='mse',optimizer=Adam(lr=0.000001)
If the problem was the learning rate, this will make your model learn more than it already did (there might be some difficult at the beginning until the optimizer adjusts itself).
Case 3:
If you got no success, maybe it's time to increase the model's capability.
Maybe add more units to the layers, add more layers or even change the model.
Case 4:
There's probably nothing you can do about this...
But if you increased the model like in case 3, be careful with overfitting (keep some test data to compare the test loss versus the training loss).
Too good models can simply memorize your data instead of learning important insights about it.

Overfitting after one epoch

I am training a model using Keras.
model = Sequential()
model.add(LSTM(units=300, input_shape=(timestep,103), use_bias=True, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(units=536))
model.add(Activation("sigmoid"))
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
while True:
history = model.fit_generator(
generator = data_generator(x_[train_indices],
y_[train_indices], batch = batch, timestep=timestep),
steps_per_epoch=(int)(train_indices.shape[0] / batch),
epochs=1,
verbose=1,
validation_steps=(int)(validation_indices.shape[0] / batch),
validation_data=data_generator(
x_[validation_indices],y_[validation_indices], batch=batch,timestep=timestep))
It is a multiouput classification accoriding to scikit-learn.org definition:
Multioutput regression assigns each sample a set of target values.This can be thought of as predicting several properties for each data-point, such as wind direction and magnitude at a certain location.
Thus, it is a recurrent neural network I tried out different timestep sizes. But the result/problem is mostly the same.
After one epoch, my train loss is around 0.0X and my validation loss is around 0.6X. And this values keep stable for the next 10 epochs.
Dataset is around 680000 rows. Training data is 9/10 and validation data is 1/10.
I ask for intuition behind that..
Is my model already over fittet after just one epoch?
Is 0.6xx even a good value for a validation loss?
High level question:
Therefore it is a multioutput classification task (not multi class), I see the only way by using sigmoid an binary_crossentropy. Do you suggest an other approach?
I've experienced this issue and found that the learning rate and batch size have a huge impact on the learning process. In my case, I've done two things.
Reduce the learning rate (try 0.00005)
Reduce the batch size (8, 16, 32)
Moreover, you can try the basic steps for preventing overfitting.
Reduce the complexity of your model
Increase the training data and also balance each sample per class.
Add more regularization (Dropout, BatchNorm)

Resources