How to block communication from specific Bluetooth hardware address(es) - bluetooth

Would like to know how a Bluetooth application can in general block communications initiated from "identified intruders" based on the Bluetooth hardware address?

Some platforms allow you to Black list devices, this will be a good way to block identified intruders.

Related

Is just the BD_ADDR of responding devices shared with the master during inquiry?

Is the Bluetooth address exchanged between two Bluetooth devices if no connection is made yet?
As when a device is in discovery mode, and you see for example a tv, headphones, or a different computer show up, is the Bluetooth address of that device being shared with the device making the inquiry, or are the others also getting the Bluetooth address of the inquiring device?
Alternatively, is the Bluetooth address only shared upon selection of the device for connection?
Thanks!
Edit: spelling
Advertising devices broadcast one-way. They do not know what devices have discovered them. Scanning for advertisements is passive. It does not require sending any packets, so neither the advertising device, nor other scanners in the area, will be aware of the scanning device.
Note that Bluetooth addresses are quite complex and varied, so how they are shared is not trivial. Devices have many kinds of addresses and change what they publicize frequently. But to the question of when an address (rather than the address) is shared, that is during connection.

Capturing bluetooth traffic to and from the computer

May i ask if it's possible to capture Bluetooth traffic to and from the computer (MacOS, Windows or linux)?
Since i am trying to use wireshark to capture traffic but having no sign for success of capturing the bluetooth traffic.
It is possible without adapters on Linux, but requires additional configuration with bluez (and the necessary bluetooth hardware).
There are also commercial peripherals available from multiple vendors that may support your OS.

Is it possible to scan a bluetooth device to find it's capabilities

I am looking for a way to scan a device I own and discover "what it can do".
In other words, I'd like to know if a device is able to describe the way you have to communicate with it in order to build some application around it.
In my case it is a simple Christmas light that I'd like to play with but this could be used in different situations.
For classic bluetooth (BR/EDR):
When scanning for bluetooth devices (Inquiry), the bluetooth device will send an inquiry response (if it wants to be discovered) and maybe also an extended inquiry response (EIR). This EIR may already contain a list of services, the devices supports. This is a very fast way to get a picture of a remote device.
Moreover, the service discovery protocol (SDP) gives more information on a device. This takes some more steps. In SDP two devices can exchange their capabilites in kind of ping pong process.
For BLE:
After connecting a BLE device usually a service discovery takes place. The BLE peripheral (e.g. headset or a light) reports its capabilities to the central (e.g. smart phone). Some of these services have predefines functionalities. Additionally, it is free to the manufacturer to add custom services.

Bluetooth protocol over wifi?

I'm looking to implement the Bluetooth protocol over a physical Wi-Fi based transport, if that makes sense.
Basically my phone has Bluetooth, and my laptop has a Wi-Fi card (802.11a/b/g).
I know that Wi-Fi operates over the range 2.412 GHz - 2.472 GHz, and that Bluetooth operates over the range 2.402 GHz - 2.480 GHz.
I couldn't help but notice the overlap here. So my questions are:
What sort of low-level APIs would I need (preferably in C, on Windows) in order to send a signal out at certain frequencies on the Wi-Fi card?
Would I be able to implement a Bluetooth stack on top of this?
So basically, can I transmit Bluetooth using my Wi-Fi card as essentially a radio transmitter?
Thanks
Implementing the Bluetooth protocol over a physical Wi-Fi based transport does make sense!
Bluetooth high speed (v3.0) defines the possibility to use alternate MAC/PHY layers, known as AMP feature. The L2CAP and higher layer protocols from Bluetooth can be transmitted over a Wi-Fi MAC/PHY layer rather than a Bluetooth MAC/PHY layer with a resulting higher throughput. Some products are on the marked supporting this - look for 'Bluetooth High Speed', AMP or Bluetooth v3.0 support.
No, you can't do this. Bluetooth devices are typically wrapped up all in one chip. Plus, they use completely different modulation techniques. No low-level anything is going to allow you to transmit anything different, unless you are flashing the device. Even then, it may not get you much closer.
Bluetooth Modulation Information:
http://www.palowireless.com/infotooth/tutorial/radio.asp and http://classes.engr.oregonstate.edu/eecs/spring2003/ece44x/groups/g9/jon_gillen/white_paper_jon.pdf
About the only thing you can share between WiFi and Bluetooth devices is the antenna. (Assuming only one device is using it at a time... don't blast 32mW into the receiver of the other radio!) The radio itself is all wrapped up into the same chip. The same is generally true for WiFi.
Bluetooth and Wifi have different phy layer protocols and thats what is coded into their chips, hence you can't use one chip to transmit packets of the other protocol.
Moreover most of the chip vendors, do not expose any RF logic.
Technically yes but there are some things to consider such as the pre existing coding on the chip and if the chip can support Bluetooth coding as well as wifi coding, I mean if you have two separate wifi chips go ahead and try but be warned I tried and nearly killed my computer because of preexisting copyright protection coding on other parts of my pc that prevented any programs on the chip from starting until I reset the chip to factory defalts.

Bluetooth UUID discovery

Does anyone know how a bluetooth device could pick up the discoverable devices' device IDs in range?
I am ideally looking for the simplest solution that involves the smallest implimentation of the bluetooth protocols.
A starting point would be good, I just wish to create a device that can store all the device ids of nearby bluetooth devices with minimal power consumption, preferably just using radio frequencies and not SDP and whatever else.
If you can't help me with this, please can you help me find good reading material for low level bluetooth (step by step) communication. The reading online is so high level that I cant work out what is actually sent, when.
Laalto nailed the answer from the Bluetooth spec/stack POV, but your question implies your looking for a stand-alone Bluetooth device - not just a laptop app scanning surrounding devices.
I can only speak for the BT chips that the company I work for manufactures (Cambridge Silicon Radio - CSR) but our chips can do that pretty much out of the box. Our chips have an on-board Virtual Machine sandbox that allows access to the firmware functions and Bluetooth stack of the chip. You can easily write a C code app to run in the virtual machine sandbox, on chip, that periodically scans for discoverable devices around, grab their ids and then download them when connected via USB or Serial, or maybe over BT when a device connects to the listener directly.
www.csr.com and www.csrsupport.com for chips, dev-kits, design references, etc.. etc...
You probably want a module with the extra HW (UARTs, USB etc...) as well as just the chip but you could implement this with something the size of a BlueTooth USB or probably smaller.
It would really help to know more about what your trying to achieve, why you want something that just scans the surrounding bluetooth devices and how big the device needs to be.
Sorry if this sounds like advertising. For balance: Broadcom make BT chips too!
The Bluetooth specs from http://www.bluetooth.org are a good starting place for low-level information. You need an account to access the specs, but you can create one for free.
Basically what you need to do is to go into Inquiry mode periodically and grab the response packets as they arrive. The more time you spend in Inquiry mode, the more likely you will discover devices in range: discoverable devices enter the Inquiry Scan mode only relatively rarely; it takes some time (10.24s at least with older Bluetooth versions) to scan all the possible frequencies in the Inquiry/Inquiry Scan frequency hopping schemes. And even then you can have suboptimal radio conditions.
For implementation I suggest you at least start with existing Bluetooth libraries such as BlueZ and do not attempt to create your own from scratch.

Resources