I was looking at this on the Wikipedia Page and was wondering if anyone has a working implementation of this.
I'm trying to learn Haskell, finding it slightly difficult and am working on the Koch Snowflake and Sierpinski Triangle.
Any code or suggestions welcome.
Thanks
For these kind of pictures which have a lot of structure and are scale independent, I would recommend the diagrams package ( http://projects.haskell.org/diagrams/ ), it's really quite a fantastic piece of code, see the following code to generate Koch snowflake written by yours truly in a matter of minutes :
snowflake :: Int -> Trail R2
snowflake n = k <> k # rotateBy (-1/3) <> k # rotateBy (1/3)
where k = koch n
koch :: Int -> Trail R2
koch 0 = P (-1,0) ~~ P (1,0)
koch n = k <> k # rotateBy (1/6) <> k # rotateBy (-1/6) <> k
where k = koch (n-1) # scale (1/3)
Which is almost self-explanatory, most of the magic is in the Monoid instance of Trail which will "concatenate" the trails end to end.
Note : (<>) is an operator for mappend, diagrams defined it in the past but this is now part of base in GHC 7.4 and will probably be included in a future version of the Haskell report, (#) is just the application reversed because diagrams author found it more pleasant to define a diagram then apply its attribute rather than write it in the other direction (so k # rotateBy (1/6) is just rotateBy (1/6) k).
Calculate the points of a triangle centered in the plane.
At each point of the triangle, calculate the points of a triangle one-third its size, and the other way up (flipped along its horizontal middle).
Pass each triangle to step 2, pass the results of that again to step 2, and so on.
Do all that again, upside down.
That should give you a list of (lists of) triangles. Now draw these triangles on the screen to the depth that you think is reasonable.
Related
Given a surface point P at (1,0,0), a normal direction (1,1,0) as well as a point light source at (1,2,0). If we assume that the surface point P is perfectly diffuse, to what location would the light have to move to achieve a maximal reflection according to the formula for diffuse surfaces (Lambertian)?
I've tried by calculating the dot product between N and L2(a,b,c) and making it = 1 because of the max. reflection is achieved with cos(0) I think. But it didn't work because I couldn't find L2 please help.
To get maximal reflection from point P, we just need to put light source on normal from point P, so in parametric form (any t):
L = P + t * N(at P) = (1,0,0) + t * (1,1,0)
Could someone tell me if I've coded this correctly? This is my code for solving for the sides of a triangle given its perimeter, altitude, and angle (for the algebra see http://www.analyzemath.com/Geometry/challenge/triangle_per_alt_angle.html)
Prompt P
Prompt H
Prompt L [the angle]
(HP^2)/(2H(1+cos(L))+2Psin(L))→Y
(-P^2-2(1+cos(L))Y/(-2P)→Z
(Z+sqrt(Z^2-4Y))/2→N
[The same as above but Z-sqrt...]→R
If N>0
N→U
If R>0
R→U
Y/U→V
sqrt(U^2+V^2-2UVcos(L))→W
Disp U
Disp V
Disp W
Also, how would I fix this so that I can input angle = 90?
Also, in this code does it matter if the altitude is the one between b and c (refer to the website again)?
Thanks in advance
The code already works with L=90°.
Yes, the altitude must be the distance from point A to the base a between points B and C, forming a right-angle with that base. The derivation made that assumption, specifically with respect to the way it used h and a in the second area formula 1/2 h a. That exact formula would not apply if h was drawn differently.
The reason your second set of inputs resulted in a non-real answer is that sometimes a set of mathematical parameters can be inconsistent with each other and describe an impossible construct, and your P, h, and L values do exactly that. Specifically, they describe an impossible triangle.
Given an altitude h and angle L, the smallest perimeter P that can be achieved is an isosceles triangle split down the middle by h. With L=30, this would have perimeter P = a + b + c = 2h tan15 + h/cos15 + h/cos15, which, plugging in your h=3, results in P=7.819. You instead tried to use P=3+sqrt(3)=4.732. Try using various numbers less than 7.819 (plus a little; I've rounded here) and you'll see they all result in imaginary results. That's math telling you you're calculating something that cannot exist in reality.
If you fill in the missing close parenthesis between the Y and the / in line 5, then your code works perfectly.
I wrote the code slightly differently from you, here's what I did:
Prompt P
Prompt H
Prompt L
HP²/(2H(1+cos(L))+2Psin(L))→Y
(HP-Ysin(L))/H→Z
Z²-4Y→D
If D<0:Then
Disp "IMAGINARY"
Stop
End
(Z+√(D))/2→C
Y/C→B
P-(B+C)→A
Disp A
Disp B
Disp C
Edit: #Gabriel, there's nothing special (with respect to this question) about the angles 30-60-90; there is an infinite number of sets of P, h, and L inputs that describe such triangles. However, if you actually want to arrive at such triangles in the answer, you've actually changed the question; instead of just knowing one angle L plus P and h, you now know three angles (30-60-90) plus P and h. You've now over-specified the triangle, so that it is pretty well certain that a randomly generated set of inputs will describe an impossible triangle. As a contrived example, if you specified h as 0.0001 and P as 99999, then that's clearly impossible, because a triangle with a tiny altitude and fairly unextreme angles (which 30-60-90 are) cannot possibly achieve a perimeter many times its altitude.
If you want to start with just one of P or h, then you can derive equations to calculate all parameters of the triangle from the known P or h plus the knowledge of the 30-60-90 angles.
To give one example of this, if we assume that side a forms the base of the triangle between the 90° and 60° angles, then we have L=30 and (labelling the 60° angle as B) we have h=b, and you can get simple equations for all parameters:
P = a + h + c
sin60 = h/c
cos60 = a/c
=> P = c cos60 + c sin60 + c
P = c(cos60 + sin60 + 1)
c = P/(cos60 + sin60 + 1)
b = h = c sin60
a = c cos60
Plugging in P=100 we have
c = 100/(cos60 + sin60 + 1) = 42.265
b = h = 36.603
a = 21.132
If you plug in P=100, h=36.603, and L=30 into the code, you'll see you get these exact results.
Always optimize for speed, then size.
Further optimizing bgoldst's code:
Prompt P,H,L
HP²/(2H(1+cos(L))+2Psin(L
.5(Z+√((HP-sin(L)Ans)/H)²-4Ans
{Y/C→B,P-B-Ans,Ans
I am trying to generate a certain amount of random uniform points inside a rectangle (I know the pair of coordinates for each corner).
Let our rectangle be
ABCD
My idea is:
Divide the rectangle into two triangles by the AC diagonal. Find the slope and the intercept of the diagonal.
Then, generate two random numbers from [0,1] interval, let them be a,b.
Evaluate x = aAB and y = bAD (AB, AD, distances). If A is not (0,0), then we can add to x and y A's coordinates.
Now we have a point (x,y). If it is not in the lower triangle (ABC), skip to the next step.
Else, add the point to our plot and also add the symmetric of (x,y) vs. the AC diagonal so that we can fill the upper triangle (ADC) too.
I have implemented this, but I highly doubt that the points are uniformly generated (judging from the plot). How should I modify my algorithm? I guess that the issue is related to how I pick the triangle and the symmetric thing.
Why not just generate x=random([A.x, B.x]) and y=random([B.y, C.y]) and put them together as (x,y)? A n-dimensional uniform distribution is simply the product of the n uniform distributions of the components.
This is referred to as point picking and other similar terms. You seem to be on the right track in that the points should come from the uniform distribution. Your plot looks reasonably random to me.
What are you doing with upper and lower triangles? They seem unnecessary and would certainly make things less random. Is this some form variance reduction along the lines of antithetic variates? If #Paddy3118 is right an you really just need random-ish points to fill the space, then you should look into low-discrepancy sequences. The Halton sequence generalizes the van der Corput sequence to multiple dimensions. If you have Matlab's Statistics Toolbox check out the sobolset and haltonset functions or qrandstream and qrand.
This approach (from #Xipan Xiao & #bonanova.) should be reproducible in many languages. MATLAB code below.
a = 0; b = 1;
n = 2000;
X = a + (b-a)*rand(n,1);
Y = a + (b-a)*rand(n,1);
Newer versions of MATLAB can make use of the makedist and random commands.
pdX = makedist('Uniform',a,b);
pdY = makedist('Uniform',a,b);
X = random(pdX,n,1);
Y = random(pdY,n,1);
The points (X,Y) will be uniformly in the rectangle with corner points (a,a), (a,b), (b,a), (b,b).
For verification, we can observe the marginal distributions for X and Y and see that those are uniform as well.
scatterhist(X,Y,'Marker','.','Direction','out')
Update: Using haltonset (suggested by #horchler)
p = haltonset(2);
XY = net(p,2000);
scatterhist(XY(:,1),XY(:,2),'Marker','.','Direction','out')
If you are after a more uniform density then you might consider a Van der Corput sequence. The sequence finds use in Monte-Carlo simulations and Wolfram Mathworld calls them a quasi-random sequence.
Generate two random numbers in the interval [0,1] translate and scale them to your rectangle as x and y.
There is just my thought, i haven't test with code yet.
1.Divide the rectangle to grid with N x M cells, depends on variable density.
2.loop through the cell and pick a random point in the cell until it reached your target point quantity.
I am looking for a tool similar to graphviz that can render graphs, but that will allow me to constrain just the x coordinate of each node. Then, the tool will automatically choose y coordinates to make the graph look neat.
Basically, I want to make a timeline.
Language / platform / rendering medium are not very important.
If you want a neat-looking graph a force-directed algorithm is going to be your best bet. One of the best ones is SFDP (developed by AT&T, included in graphviz) though I can't seem to find pseudocode or an easy implementation. I don't think there are any algorithms this specialized. Thankfully, it's easy to code your own. I'll present some pseudocode mostly lifted form Wikipedia, but with suitably one-dimensional modifications. I'll assume you have n vertices and the vector of x-positions is x, subscripted by x.i.
set all vertex velocities to (0,0)
set all vertex positions to (x.i, random)
while (KE > epsilon)
KE = 0
for each vertex v
force = (0,0)
for each vertex u != v
force = force + (0, coulomb(u, v).y)
if u is incident to v
force = force + (0, hooke(u, v).y)
v.velocity = (v.velocity + timestep * force) * damping
v.position = v.position + timestep * v.velocity
KE = KE + |v.velocity| ^ 2
here the .y denotes getting the y-component of the force. This ensures that the x-components of the positions of the vertices never change from what you set them to be. The epsilon parameter is to be set by you, and should be something small compared to what you expect KE (the kinetic energy) to be. Also, |v| denotes the magnitude of the vector v (all computations are of 2-vectors in the above, except the KE). Note I set the mass of all the nodes to be 1, but you can change that if you want.
The Hooke and Coulomb functions calculate the respective forces between nodes; the first is linear in distance between vertices, the second is quadratic, so there is a guaranteed equilibrium. These functions look something like
def hooke(u, v)
return -k * |u.position - v.position|
def coulomb(u, v)
return C * |u.position - v.position|
where again most computations are in vector form. C and k have real values but experiment to get the graph you want. This isn't usually necessary because the scaling factors will, in two dimensions, pretty much expand or contract the whole graph, but here the x-distances are set so to get a good-looking graph you will have to change the values a bit.
Given two image buffers (assume it's an array of ints of size width * height, with each element a color value), how can I map an area defined by a quadrilateral from one image buffer into the other (always square) image buffer? I'm led to understand this is called "projective transformation".
I'm also looking for a general (not language- or library-specific) way of doing this, such that it could be reasonably applied in any language without relying on "magic function X that does all the work for me".
An example: I've written a short program in Java using the Processing library (processing.org) that captures video from a camera. During an initial "calibrating" step, the captured video is output directly into a window. The user then clicks on four points to define an area of the video that will be transformed, then mapped into the square window during subsequent operation of the program. If the user were to click on the four points defining the corners of a door visible at an angle in the camera's output, then this transformation would cause the subsequent video to map the transformed image of the door to the entire area of the window, albeit somewhat distorted.
Using linear algebra is much easier than all that geometry! Plus you won't need to use sine, cosine, etc, so you can store each number as a rational fraction and get the exact numerical result if you need it.
What you want is a mapping from your old (x,y) co-ordinates to your new (x',y') co-ordinates. You can do it with matrices. You need to find the 2-by-4 projection matrix P such that P times the old coordinates equals the new co-ordinates. We'll assume that you're mapping lines to lines (not, for instance, straight lines to parabolas). Because you have a projection (parallel lines don't stay parallel) and translation (sliding), you need a factor of (xy) and (1), too. Drawn as matrices:
[x ]
[a b c d]*[y ] = [x']
[e f g h] [x*y] [y']
[1 ]
You need to know a through h so solve these equations:
a*x_0 + b*y_0 + c*x_0*y_0 + d = i_0
a*x_1 + b*y_1 + c*x_1*y_1 + d = i_1
a*x_2 + b*y_2 + c*x_2*y_2 + d = i_2
a*x_3 + b*y_3 + c*x_3*y_3 + d = i_3
e*x_0 + f*y_0 + g*x_0*y_0 + h = j_0
e*x_1 + f*y_1 + g*x_1*y_1 + h = j_1
e*x_2 + f*y_2 + g*x_2*y_2 + h = j_2
e*x_3 + f*y_3 + g*x_3*y_3 + h = j_3
Again, you can use linear algebra:
[x_0 y_0 x_0*y_0 1] [a e] [i_0 j_0]
[x_1 y_1 x_1*y_1 1] * [b f] = [i_1 j_1]
[x_2 y_2 x_2*y_2 1] [c g] [i_2 j_2]
[x_3 y_3 x_3*y_3 1] [d h] [i_3 j_3]
Plug in your corners for x_n,y_n,i_n,j_n. (Corners work best because they are far apart to decrease the error if you're picking the points from, say, user-clicks.) Take the inverse of the 4x4 matrix and multiply it by the right side of the equation. The transpose of that matrix is P. You should be able to find functions to compute a matrix inverse and multiply online.
Where you'll probably have bugs:
When computing, remember to check for division by zero. That's a sign that your matrix is not invertible. That might happen if you try to map one (x,y) co-ordinate to two different points.
If you write your own matrix math, remember that matrices are usually specified row,column (vertical,horizontal) and screen graphics are x,y (horizontal,vertical). You're bound to get something wrong the first time.
EDIT
The assumption below of the invariance of angle ratios is incorrect. Projective transformations instead preserve cross-ratios and incidence. A solution then is:
Find the point C' at the intersection of the lines defined by the segments AD and CP.
Find the point B' at the intersection of the lines defined by the segments AD and BP.
Determine the cross-ratio of B'DAC', i.e. r = (BA' * DC') / (DA * B'C').
Construct the projected line F'HEG'. The cross-ratio of these points is equal to r, i.e. r = (F'E * HG') / (HE * F'G').
F'F and G'G will intersect at the projected point Q so equating the cross-ratios and knowing the length of the side of the square you can determine the position of Q with some arithmetic gymnastics.
Hmmmm....I'll take a stab at this one. This solution relies on the assumption that ratios of angles are preserved in the transformation. See the image for guidance (sorry for the poor image quality...it's REALLY late). The algorithm only provides the mapping of a point in the quadrilateral to a point in the square. You would still need to implement dealing with multiple quad points being mapped to the same square point.
Let ABCD be a quadrilateral where A is the top-left vertex, B is the top-right vertex, C is the bottom-right vertex and D is the bottom-left vertex. The pair (xA, yA) represent the x and y coordinates of the vertex A. We are mapping points in this quadrilateral to the square EFGH whose side has length equal to m.
Compute the lengths AD, CD, AC, BD and BC:
AD = sqrt((xA-xD)^2 + (yA-yD)^2)
CD = sqrt((xC-xD)^2 + (yC-yD)^2)
AC = sqrt((xA-xC)^2 + (yA-yC)^2)
BD = sqrt((xB-xD)^2 + (yB-yD)^2)
BC = sqrt((xB-xC)^2 + (yB-yC)^2)
Let thetaD be the angle at the vertex D and thetaC be the angle at the vertex C. Compute these angles using the cosine law:
thetaD = arccos((AD^2 + CD^2 - AC^2) / (2*AD*CD))
thetaC = arccos((BC^2 + CD^2 - BD^2) / (2*BC*CD))
We map each point P in the quadrilateral to a point Q in the square. For each point P in the quadrilateral, do the following:
Find the distance DP:
DP = sqrt((xP-xD)^2 + (yP-yD)^2)
Find the distance CP:
CP = sqrt((xP-xC)^2 + (yP-yC)^2)
Find the angle thetaP1 between CD and DP:
thetaP1 = arccos((DP^2 + CD^2 - CP^2) / (2*DP*CD))
Find the angle thetaP2 between CD and CP:
thetaP2 = arccos((CP^2 + CD^2 - DP^2) / (2*CP*CD))
The ratio of thetaP1 to thetaD should be the ratio of thetaQ1 to 90. Therefore, calculate thetaQ1:
thetaQ1 = thetaP1 * 90 / thetaD
Similarly, calculate thetaQ2:
thetaQ2 = thetaP2 * 90 / thetaC
Find the distance HQ:
HQ = m * sin(thetaQ2) / sin(180-thetaQ1-thetaQ2)
Finally, the x and y position of Q relative to the bottom-left corner of EFGH is:
x = HQ * cos(thetaQ1)
y = HQ * sin(thetaQ1)
You would have to keep track of how many colour values get mapped to each point in the square so that you can calculate an average colour for each of those points.
I think what you're after is a planar homography, have a look at these lecture notes:
http://www.cs.utoronto.ca/~strider/vis-notes/tutHomography04.pdf
If you scroll down to the end you'll see an example of just what you're describing. I expect there's a function in the Intel OpenCV library which will do just this.
There is a C++ project on CodeProject that includes source for projective transformations of bitmaps. The maths are on Wikipedia here. Note that so far as i know, a projective transformation will not map any arbitrary quadrilateral onto another, but will do so for triangles, you may also want to look up skewing transforms.
If this transformation has to look good (as opposed to the way a bitmap looks if you resize it in Paint), you can't just create a formula that maps destination pixels to source pixels. Values in the destination buffer have to be based on a complex averaging of nearby source pixels or else the results will be highly pixelated.
So unless you want to get into some complex coding, use someone else's magic function, as smacl and Ian have suggested.
Here's how would do it in principle:
map the origin of A to the origin of B via a traslation vector t.
take unit vectors of A (1,0) and (0,1) and calculate how they would be mapped onto the unit vectors of B.
this gives you a transformation matrix M so that every vector a in A maps to M a + t
invert the matrix and negate the traslation vector so for every vector b in B you have the inverse mapping b -> M-1 (b - t)
once you have this transformation, for each point in the target area in B, find the corresponding in A and copy.
The advantage of this mapping is that you only calculate the points you need, i.e. you loop on the target points, not the source points. It was a widely used technique in the "demo coding" scene a few years back.