I'd been using RestKit for the last two years, but recently I've started thinking about transition from these monolith framework as it seems to be really overkill.
Here's my pros for moving forward:
There is big need in using NSURLSession for background fetches and RestKit has only experimental branch for transition to AFNetworking 2.0. No actual dates when transition will be finished. (Main Reason)
No need for CoreData support in network library as no need for fully functional offline data storage.
Having headache with new concept of response/request descriptors as they don't support different parameters in path patterns (ex. access token parameter) and there is no way to create object request operation in one line with custom descriptor. Here I am loosing features of object manager as facade.
I. The biggest loss of RestKit for me in object mapping process.
Could you recommend standalone libraries that you use which shows themselves as flexible and stable?
II. And as I sad I need no fully functional storage but I still need some caching support in some places.
I've heard that NSURLCache has become useful in last OS release.
Did you use it and what's the strategy?
Does it return cached API responses when network connection is down?
III. Does anybody faces the same problems?
What solutions have you applied?
Maybe someone could give some piece of advice about architecture that he or she uses in multiple apps with pure AFNetworking?
I. In agreement with others who have commented, AFNetworking + Mantle is a simple and effective way to interact with a Restful API and to replace RestKit's object mapping process that you miss.
II. To answer the requirements of your caching support is highly dependent on the context. However, I have found for my recent functional requirements that caching a view model for a particular controller's screen and only caching reference data returned by APIs allows me to keep the application logic relatively simple whilst giving the user some continuity. A simple error notification for connectivity issues can be dealt with a cross-cutting manner.
III. One thought on the architecture relevant to this aspect is to ensure that the APIs the app is dependent on provides data according to the app experience. This allows your app to focus on what it is good at (a very slick user-experience) and moves logic into the API's closer to API dependencies such as data. This has a further benefit of reducing the chattiness of the app.
Related
Are there any best practices for the implementation of API versioning? I'm interested in the following points:
Controller, service - e.g. do we use a different controller class for each version of the API? Does a newer controller class inherit the older controller?
Model - if the API versions carry different versions of the same model - how do we handle conversions? E.g. if v1 of the API uses v1 of the model, and v2 of the API uses v2 of the model, and we want to support both (for backward-compatibility) - how do we do the conversions?
Are there existing frameworks/libraries can I use for these purposes in Java and JavaScript?
Thanks!
I always recommend a distinct controller class per API version. It keeps things clean and clear to maintainers. The next version can usually be started by copying and pasting the last version. You should define a clear versioning policy; for example N-2 versions. By doing so, you end up with 3 side-by-side implementations rather than an explosion that some people think you'll have. Refactoring business logic and other components that are not specific to a HTTP API version out of controllers can help reduce code duplication.
In my strong opinion, a controller should absolutely not inherit from another controller, save for a base controller with version-neutral functionality (but not APIs). HTTP is the API. HTTP has methods, not verbs. Think of it as Http.get(). Using is another language such as Java, C#, etc is a facade that is an impedance mismatch to HTTP. HTTP does not support inheritance, so attempting to use inheritance in the implementation is only likely to exacerbate the mismatch problem. There are other practical challenges too. For example, you can unherit a method, which complicates the issue of sunsetting an API in inherited controllers (not all versions are additive). Debugging can also be confusing because you have to find the correct implementation to set a breakpoint. Putting some thought into a versioning policy and factoring responsibilities to other components will all, but negate the need for inheritance in my experience.
Model conversion is an implementation detail. It is solely up to the server. Supporting conversions is very situational. Conversions can be bidirectional (v1<->v2) or unidirectional (v2->v1). A Mapper is a fairly common way to convert one form to another. Additive attribute scenarios often just require a default value for new attributes in storage for older API versions. Ultimately, there is no single answer to this problem for all scenarios.
It should be noted that backward-compatibility is a misnomer in HTTP. There really is no such thing. The API version is a contract that includes the model. The convenience or ease by which a new version of a model can be converted to/from an old version of the model should be considered just that - convenience. It's easy to think that an additive change is backward-capable, but a server cannot guarantee that it is with clients. Striking the notion of backwards-capable in the context of HTTP will help you fall into the pit of success.
Using Open API (formerly known as Swagger) is likely the best option to integrate clients with any language. There are tools that can use the document to create clients into your preferred programming language. I don't have a specific recommendation for a Java library/framework on the server side, but there are several options.
To speed up development for my next Node-API I was looking for a suitable Framework. In the past I was building my APIs with express only.
One Design pattern I always found useful is to completely seperate the business logic from route-handling in services. Those services only accept the required information (like a user id or data) and return a promise resolving the result of the operation.
This way it is easy to reuse these services in other routes, to combine them, test them, or call them based on schedules or other events - totally independent from endpoint-calls. Routing and Middleware take care of access-controll, error-handling and respondig.
Looking at the documentations of those frameworks (sailsjs, keystonejs, ...) I mostly see the business-logic tightly coupled to individual routes, directly accepting request objects and handling the responses. Only as an afterthought it seems there is sometimes offered a way to extract "often used code" into helper functions.
Am I missing something? How come this pattern seems to be the standard of API design? Is this a best practice for a reason?
It might have to do with Node.js services being smaller in size. If you're coming from an enterprise background, you're well aware mixing business-logic with controller code doesn't fly in the long run. Perhaps small projects can get away with defying that, but once the size increases, you can't avoid the laws of physics. It's best to separate concerns and keep the codebase maintainable.
I'd also add that below services, it's good to have a separate layer that handles talking to outside process boundaries. That way, you can test business logic in isolation by providing appropriate test doubles for integrations. Here's a longer explanation of how it would work in a Node project: Organize Node.js API project using 3-layer architecture.
Background
We are looking at porting a 'monolithic' 3 tier Web app to a microservices architecture. The web app displays listings to a consumer (think Craiglist).
The backend consists of a REST API that calls into a SQL DB and returns JSON for a SPA app to build a UI (there's also a mobile app). Data is written to the SQL DB via background services (ftp + worker roles). There's also some pages that allow writes by the user.
Information required:
I'm trying to figure out how (if at all), Azure Service Fabric would be a good fit for a microservices architecture in my scenario. I know the pros/cons of microservices vs monolith, but i'm trying to figure out the application of various microservice programming models to our current architecture.
Questions
Is Azure Service Fabric a good fit for this? If not, other recommendations? Currently i'm leaning towards a bunch of OWIN-based .NET web sites, split up by area/service, each hosted on their own machine and tied together by an API gateway.
Which Service Fabric programming model would i go for? Stateless services with their own backing DB? I can't see how Stateful or Actor model would help here.
If i went with Stateful services/Actor, how would i go about updating data as part of a maintenance/ad-hoc admin request? Traditionally we would simply login to the DB and update the data, and the API would return the new data - but if it's persisted in-memory/across nodes in a cluster, how would we update it? Would i have to expose this all via methods on the service? Similarly, how would I import my existing SQL data into a stateful service?
For Stateful services/actor model, how can I 'see' the data visually, with an object Explorer/UI. Our data is our Gold, and I'm concerned of the lack of control/visibility of it in the reliable services models
Basically, is there some documentation on the decision path towards which programming model to go for? I could model a "listing" as an Actor, and have millions of those - sure, but i could also have a Stateful service that stores the listing locally, and i could also have a Stateless service that fetches it from the DB. How does one decide as to which is the best approach, for a given use case?
Thanks.
What is it about your current setup that isn't meeting your requirements? What do you hope to gain from a more complex architecture?
Microservices aren't a magic bullet. You mainly get four benefits:
You can scale and distribute pieces of your overall system independently. Service Fabric has very sophisticated tools and advanced capabilities for this.
You can deploy and upgrade pieces of your overall system independently. Service Fabric again has advanced capabilities for this.
You can have a polyglot system - each service can be written in a different language/platform.
You can use conflicting dependencies - each service can have its own set of dependencies, like different framework versions.
All of this comes at a cost and introduces complexity and new ways your system can fail. For example: your fast, compile-time checked in-proc method calls now become slow (by comparison to an in-proc function call) failure-prone network calls. And these are not specific to Service Fabric, btw, this is just what happens you go from in-proc method calls to cross-machine I/O - doesn't matter what platform you use. The decision path here is a pro/con list specific to your application and your requirements.
To answer your Service Fabric questions specifically:
Which programming model do you go for? Start with stateless services with ASP.NET Core. It's going to be the simplest translation of your current architecture that doesn't require mucking around with your data layer.
Stateful has a lot of great uses, but it's not necessarily a replacement for your RDBMS. A good place to start is hot data that can be stored in simple key-value pairs, is accessed frequently and needs to be low-latency (you get local reads!), and doesn't need to be datamined. Some examples include user session state, cache data, a "snapshot" of the most recent items in a data stream (like the most recent stock quote in a stream of stock quotes).
Currently the only way to see or query your data is programmatically directly against the Reliable Collection APIs. There is no viewer or "management studio" tool. You have to write (and secure) an API in each service that can display and query data.
Finally, the actor model is a very niche model. It serves specific purposes but if you just treat it as a data store it will not work for you. Like in your example, a listing per actor probably wouldn't work because you can't query across that list, or even have multiple users reading the same listing simultaneously.
I am developing an social app on iOS that have many-to-many relation, local persistency, and user interaction. I have tried using native Parse API in iOS and find it too cumbersome to do all the client-server logic. So my focus shifted to finding a syncing solution.
After some research I found AFIncrementalStore quite easy to use and it's highly integrated in CoreData. I just started to work on this and I have two questions to ask:
1) How to do the authentication process? Is it in AFRESTClient?
2) How to set up AFRESTClient to match Parse's REST API? (an example would be great!)
P.S. I also found FTASync, which seems to be another solution. Any thought on this framework?
Any general suggestion on client-server syncing solutions will be highly appreciated!
Thanks,
Lei Zhang
Back with iOS 5 Apple silently rolled out NSIncrementalStore to manage connection between APIs and persistent stores. Because I couldn't word it better myself:
NSIncrementalStore is an abstract subclass of NSPersistentStore designed to "create persistent stores which load and save data incrementally, allowing for the management of large and/or shared datasets". And while that may not sound like much, consider that nearly all of the database adapters we rely on load incrementally from large, shared data stores. What we have here is a goddamned miracle.
Source: http://nshipster.com/nsincrementalstore/
That being said, I've been working on my own NSIncrementalStore (built specifically for Parse and utilizing the Parse iOS/OS X SDK) and you're welcome to check out/use/contribute to the project at https://github.com/sbonami/PFIncrementalStore.
Take a look at this StackOverflow question and at Chris Wagner's article on raywenderlich.com.
The linked SO question has examples for how to include the authentication token with each request to Parse. So you'll just need to have the user log in first, and store their token to include it with each subsequent request.
Chris Wagner's tutorial has a sample AFHTTPClient named SDAFParseApiClient to communicate with the Parse REST API. You'd have to adapt it to be an AFRESTClient subclass, but it should give you a start.
Some other thoughts between the two solutions you're considering:
AFIncrementalStore does not allow the user to make any changes without a network connection, while FTASync keeps a full Core Data SQLite store locally and syncs changes to the server when you tell it to.
FTASync requires you to make all your synched managed objects subclasses of FTASyncParent, with extra properties for sync metadata. AFIncrementalStore keeps its metadata behind the scenes, not in your model.
FTASync appears not to be widely used and hasn't been updated in over a year; if you use it you will likely be maintaining it.
I have a app in which I need to query a sharepoint site via services. The app will be under heavy usage so performance and scalability will be two of my priorities.
I started to investigate which service approach is better and from a perf point of view it seems that client object model is the one officially suggested, but when I came to scalability I personally found that actually web services seem more potent than client object model. This is because it seems that web services have async support for IO bound operations rather than client object model that doesn't. I say doesn't because as Stephen Toub said the ability to invoke a synchronous method asynchronously does nothing for scalability and I think BeginInvoke does just that.
I have to mention that I am using in my app C# 5 async/await feature in order to return the thread to the thread pool when queries are executed on the server.
My question is, what should weight more in order to take a decision?
Edit: It is worth to mention that I am not using the Silverlight CSOM, I am using the more generic .NET one.
This is an answer with no answer. :)
You are correct in that BeginInvoke is fake-asynchronous (i.e., it just issues the blocking call on a thread pool thread). So it would actually be worse, scalability-wise, than just invoking the blocking methods.
First, consider your scalability as compared to your Sharepoint server. If you're running on roughly equivalent hardware, then you probably don't need to scale any more than the Sharepoint server will. You would probably be fine with either solution.
If you do need to scale better (e.g., the Sharepoint server is a cluster or cloud, or if your machine is much lesser than the Sharepoint machine), then it requires more thought and likely testing.
The better performance in the client model is purely from its batching capabilities. So if your application won't use batching, then the (asynchronous) web services model would be better.
However, if your application uses batching and needs to scale better, then there isn't an answer. In this case, the only way to know is to build a test case both ways and measure it.
Actually, the client object model not only provides, but sometimes requires asynchronous access. You can find more info in the Data Retrieval Overview but the short version is that:
You create and load one or more queries in a ClientRuntimeContext then
Execute all loaded queries either synchronously with ClientRuntimeContext.ExecuteQuery or asynchronously with ClientRuntimeContext.ExecuteQueryAsync with two callbacks for success or failure
You don't have to use BeginInvoke anywhere.
In fact, the Client object model in Silverlight provides only the Async method in which case you are forced to execute the call asynchronously.
The syntax is quirky, but the client object model targets .NET 3.5 and Silverlight, so it wasn't possible to provide a Task based interface. You can even argue that callbacks are somewhat simpler than the Begin/End pattern and definitelly better that raising completion events.
EDIT
As #alexb noticed, ExecuteQueryAsync is available only in Silverlight. There are other ways to work asynchronously though.
You can take advantage of Sharepoint's OData support to query lists using WCF Data Services. The query scenario is a bit similar, as you submit your query and wait for a callback when the results come in. In the meantime, you get access to a DataServiceQuery object that represents the asynchronous query.
This method uses REST/Json and therefore lighter on the wire than the web services. The LINQ and ORM-like API are also easier to work with compared to the web services.
Sharepoint's support is described in Query SharePoint Foundation with ADO.NET Data Services and asynchronous querying is described in How to: Execute Asynchronous Data Service Queries (WCF Data Services)